Table Of Contents

Welcome to galpy’s documentation

galpy is a python package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials.

Quick-start guide

Installation

galpy can be installed using pip as:

> pip install galpy

or to upgrade without upgrading the dependencies:

> pip install -U --no-deps galpy

Some advanced features require the GNU Scientific Library (GSL; see below). If you want to use these, install the GSL first (or install it later and re-install using the upgrade command above).

The latest updates in galpy can be installed using:

> pip install -U --no-deps git+git://github.com/jobovy/galpy.git#egg=galpy

or:

> pip install -U --no-deps --install-option="--prefix=~/local" git+git://github.com/jobovy/galpy.git#egg=galpy

for a local installation. The latest updates can also be installed from the source code downloaded from github using the standard python setup.py installation:

> python setup.py install

or:

> python setup.py install --prefix=~/local

for a local installation. A basic installation works with just the numpy/scipy/matplotlib stack. Some basic tests can be performed by executing:

> nosetests -v -w nose/

Advanced installation

Certain advanced features require the GNU Scientific Library (GSL), with action calculations requiring version 1.14 or higher. On a Mac you can make sure that the correct architecture is installed using Homebrew as:

> brew install gsl --universal

You should be able to check your version using:

> gsl-config --version

Other advanced features, including calculating the normalization of certain distribution functions using Gauss-Legendre integration require numpy version 1.7.0 or higher.

galpy uses OpenMP to parallelize various of the computations done in C. galpy can be installed without OpenMP by specifying the option --no-openmp when running the python setup.py commands above or when using pip as follows:

> pip install -U --no-deps --install-option="--no-openmp" git+git://github.com/jobovy/galpy.git#egg=galpy

or:

> pip install -U --no-deps --install-option="--prefix=~/local" --install-option="--no-openmp" git+git://github.com/jobovy/galpy.git#egg=galpy

for a local installation. This can be especially useful if one is using the clang compiler, which is the new default on macs with OS X (>= 10.8), but does not support OpenMP. This leads to errors in the installation of galpy such as:

ld: library not found for -lgomp

clang: error: linker command failed with exit code 1 (use -v to see invocation)

If you get these errors, you can use the commands given above to install without OpenMP, or specify to use gcc by specifying the CC and LDSHARED environment variables to use gcc.

Introduction

The most basic features of galpy are its ability to display rotation curves and perform orbit integration for arbitrary combinations of potentials. This section introduce the most basic features of galpy.potential and galpy.orbit.

Rotation curves

The following code example shows how to initialize a Miyamoto-Nagai disk potential and plot its rotation curve

>>> from galpy.potential import MiyamotoNagaiPotential
>>> mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,normalize=1.)
>>> mp.plotRotcurve(Rrange=[0.01,10.],grid=1001)

The normalize=1. option normalizes the potential such that the radial force is a fraction normalize=1. of the radial force necessary to make the circular velocity 1 at R=1.

Similarly we can initialize other potentials and plot the combined rotation curve

>>> from galpy.potential import NFWPotential, HernquistPotential
>>> mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,normalize=.6)
>>> np= NFWPotential(a=4.5,normalize=.35)
>>> hp= HernquistPotential(a=0.6/8,normalize=0.05)
>>> from galpy.potential import plotRotcurve
>>> plotRotcurve([hp,mp,np],Rrange=[0.01,10.],grid=1001,yrange=[0.,1.2])

Note that the normalize values add up to 1. such that the circular velocity will be 1 at R=1. The resulting rotation curve is approximately flat. To show the rotation curves of the three components do

>>> mp.plotRotcurve(Rrange=[0.01,10.],grid=1001,overplot=True)
>>> hp.plotRotcurve(Rrange=[0.01,10.],grid=1001,overplot=True)
>>> np.plotRotcurve(Rrange=[0.01,10.],grid=1001,overplot=True)

You’ll see the following

_images/rotcurve.png

As a shortcut the [hp,mp,np] Milky-Way-like potential is defined as

>>> from galpy.potential import MWPotential

This is not the recommended Milky-Way-like potential in galpy. The (currently) recommended Milky-Way-like potential is MWPotential2014:

>>> from galpy.potential import MWPotential2014

MWPotential2014 has a more realistic bulge model and is actually fit to various dynamical constraints on the Milky Way (see here and the galpy paper).

Units in galpy

Above we normalized the potentials such that they give a circular velocity of 1 at R=1. These are the standard galpy units (sometimes referred to as natural units in the documentation). galpy will work most robustly when using these natural units. When using galpy to model a real galaxy with, say, a circular velocity of 220 km/s at R=8 kpc, all of the velocities should be scaled as v= V/[220 km/s] and all of the positions should be scaled as x = X/[8 kpc] when using galpy’s natural units.

For convenience, a utility module bovy_conversion is included in galpy that helps in converting between physical units and natural units for various quantities. For example, in natural units the orbital time of a circular orbit at R=1 is \(2\pi\); in physical units this corresponds to

>>> from galpy.util import bovy_conversion
>>> print 2.*numpy.pi*bovy_conversion.time_in_Gyr(220.,8.)
0.223405444283

or about 223 Myr. We can also express forces in various physical units. For example, for the Milky-Way-like potential defined in galpy, we have that the vertical force at 1.1 kpc is

>>> from galpy.potential import MWPotential2014, evaluatezforces
>>> -evaluatezforces(1.,1.1/8.,MWPotential2014)*bovy_conversion.force_in_pcMyr2(220.,8.)
2.0259181908629933

which we can also express as an equivalent surface-density by dividing by \(2\pi G\)

>>> -evaluatezforces(1.,1.1/8.,MWPotential2014)*bovy_conversion.force_in_2piGmsolpc2(220.,8.)
71.658016957792356

Because the vertical force at the solar circle in the Milky Way at 1.1 kpc above the plane is approximately \(70\,(2\pi G\, M_\odot\,\mathrm{pc}^{-2})\) (e.g., 2013arXiv1309.0809B), this shows that our Milky-Way-like potential has a realistic disk (at least in this respect).

bovy_conversion further has functions to convert densities, masses, surface densities, and frequencies to physical units (actions are considered to be too obvious to be included); see here for a full list. As a final example, the local dark matter density in the Milky-Way-like potential is given by

>>> MWPotential2014[2].dens(1.,0.)*bovy_conversion.dens_in_msolpc3(220.,8.)
0.0075419566970079373

or

>>> MWPotential2014[2].dens(1.,0.)*bovy_conversion.dens_in_gevcc(220.,8.)
0.28643101789044584

or about \(0.0075\,M_\odot\,\mathrm{pc}^{-3} \approx 0.3\,\mathrm{GeV\,cm}^{-3}\), in line with current measurements (e.g., 2012ApJ...756...89B).

When galpy Orbits are initialized using a distance scale ro= and a velocity scale vo= output quantities returned and plotted in physical coordinates. Specifically, positions are are returned in units of kpc, velocities in km/s, energies and the Jacobi integral in (km/s)^2, the angular momentum o.L() and actions in km/s kpc, frequencies in 1/Gyr, and times and periods in Gyr.

Orbit integration

We can also integrate orbits in all galpy potentials. Going back to a simple Miyamoto-Nagai potential, we initialize an orbit as follows

>>> from galpy.orbit import Orbit
>>> mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,amp=1.,normalize=1.)
>>> o= Orbit(vxvv=[1.,0.1,1.1,0.,0.1])

Since we gave Orbit() a five-dimensional initial condition [R,vR,vT,z,vz], we assume we are dealing with a three-dimensional axisymmetric potential in which we do not wish to track the azimuth. We then integrate the orbit for a set of times ts

>>> import numpy
>>> ts= numpy.linspace(0,100,10000)
>>> o.integrate(ts,mp,nethod='odeint')

Now we plot the resulting orbit as

>>> o.plot()

Which gives

_images/mp-orbit-integration.png

The integrator used is not symplectic, so the energy error grows with time, but is small nonetheless

>>> o.plotE(normed=True)
_images/mp-orbit-E.png

When we use a symplectic leapfrog integrator, we see that the energy error remains constant

>>> o.integrate(ts,mp,method='leapfrog')
>>> o.plotE(xlabel=r'$t$',ylabel=r'$E(t)/E(0)$')
_images/mp-orbit-Esymp.png

Because stars have typically only orbited the center of their galaxy tens of times, using symplectic integrators is mostly unnecessary (compared to planetary systems which orbits millions or billions of times). galpy contains fast integrators written in C, which can be accessed through the method= keyword (e.g., integrate(...,method='dopr54_c') is a fast high-order Dormand-Prince method).

When we integrate for much longer we see how the orbit fills up a torus (this could take a minute)

>>> ts= numpy.linspace(0,1000,10000)
>>> o.integrate(ts,mp,method='odeint')
>>> o.plot()
_images/mp-long-orbit-integration.png

As before, we can also integrate orbits in combinations of potentials. Assuming mp, np, and hp were defined as above, we can

>>> ts= numpy.linspace(0,100,10000)
>>> o.integrate(ts,[mp,hp,np])
>>> o.plot()
_images/mphpnp-orbit-integration.png

Energy is again approximately conserved

>>> o.plotE(xlabel=r'$t$',ylabel=r'$E(t)/E(0)$')
_images/mphpnp-orbit-E.png

Escape velocity curves

Just like we can plot the rotation curve for a potential or a combination of potentials, we can plot the escape velocity curve. For example, the escape velocity curve for the Miyamoto-Nagai disk defined above

>>> mp.plotEscapecurve(Rrange=[0.01,10.],grid=1001)
_images/esc-miyamoto.png

or of the combination of potentials defined above

>>> from galpy.potential import plotEscapecurve
>>> plotEscapecurve([mp,hp,np],Rrange=[0.01,10.],grid=1001)
_images/esc-comb.png

For the Milky-Way-like potential MWPotential2014, the escape-velocity curve is

>>> plotEscapecurve(MWPotential2014,Rrange=[0.01,10.],grid=1001)
_images/esc-mw14.png

At the solar radius, the escape velocity is

>>> from galpy.potential import vesc
>>> vesc(MWPotential2014,1.)
2.3316389848832784

Or, for a local circular velocity of 220 km/s

>>> vesc(MWPotential2014,1.)*220.
512.96057667432126

similar to direct measurements of this (e.g., 2007MNRAS.379..755S and 2014A%26A...562A..91P).

Potentials in galpy

galpy contains a large variety of potentials in galpy.potential that can be used for orbit integration, the calculation of action-angle coordinates, as part of steady-state distribution functions, and to study the properties of gravitational potentials. This section introduces some of these features.

Potentials and forces

Various 3D and 2D potentials are contained in galpy, list in the API page. Another way to list the latest overview of potentials included with galpy is to run

>>> import galpy.potential
>>> print [p for p in dir(galpy.potential) if 'Potential' in p]
['CosmphiDiskPotential',
 'DehnenBarPotential',
 'DoubleExponentialDiskPotential',
 'EllipticalDiskPotential',
 'FlattenedPowerPotential',
 'HernquistPotential',
....]

(list cut here for brevity). Section Rotation curves explains how to initialize potentials and how to display the rotation curve of single Potential instances or of combinations of such instances. Similarly, we can evaluate a Potential instance

>>> from galpy.potential import MiyamotoNagaiPotential
>>> mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,normalize=1.)
>>> mp(1.,0.)
-1.2889062500000001

Most member functions of Potential instances have corresponding functions in the galpy.potential module that allow them to be evaluated for lists of multiple Potential instances. galpy.potential.MWPotential2014 is such a list of three Potential instances

>>> from galpy.potential import MWPotential2014
>>> print MWPotential2014
[<galpy.potential_src.PowerSphericalPotentialwCutoff.PowerSphericalPotentialwCutoff instance at 0x1089b23b0>, <galpy.potential_src.MiyamotoNagaiPotential.MiyamotoNagaiPotential instance at 0x1089b2320>, <galpy.potential_src.TwoPowerSphericalPotential.NFWPotential instance at 0x1089b2248>]

and we can evaluate the potential by using the evaluatePotentials function

>>> from galpy.potential import evaluatePotentials
>>> evaluatePotentials(1.,0.,MWPotential2014)
-1.3733506513947895

We can plot the potential of axisymmetric potentials (or of non-axisymmetric potentials at phi=0) using the plot member function

>>> mp.plot()

which produces the following plot

_images/mp-potential.png

Similarly, we can plot combinations of Potentials using plotPotentials, e.g.,

>>> from galpy.potential import plotPotentials
>>> plotPotentials(MWPotential2014,rmin=0.01)
_images/MWPotential-potential.png

These functions have arguments that can provide custom R and z ranges for the plot, the number of grid points, the number of contours, and many other parameters determining the appearance of these figures.

galpy also allows the forces corresponding to a gravitational potential to be calculated. Again for the Miyamoto-Nagai Potential instance from above

>>> mp.Rforce(1.,0.)
-1.0

This value of -1.0 is due to the normalization of the potential such that the circular velocity is 1. at R=1. Similarly, the vertical force is zero in the mid-plane

>>> mp.zforce(1.,0.)
-0.0

but not further from the mid-plane

>>> mp.zforce(1.,0.125)
-0.53488743705310848

As explained in Units in galpy, these forces are in standard galpy units, and we can convert them to physical units using methods in the galpy.util.bovy_conversion module. For example, assuming a physical circular velocity of 220 km/s at R=8 kpc

>>> from galpy.util import bovy_conversion
>>> mp.zforce(1.,0.125)*bovy_conversion.force_in_kmsMyr(220.,8.)
-3.3095671288657584 #km/s/Myr
>>> mp.zforce(1.,0.125)*bovy_conversion.force_in_2piGmsolpc2(220.,8.)
-119.72021771473301 #2 \pi G Msol / pc^2

Again, there are functions in galpy.potential that allow for the evaluation of the forces for lists of Potential instances, such that

>>> from galpy.potential import evaluateRforces
>>> evaluateRforces(1.,0.,MWPotential2014)
-1.0
>>> from galpy.potential import evaluatezforces
>>> evaluatezforces(1.,0.125,MWPotential2014)*bovy_conversion.force_in_2piGmsolpc2(220.,8.)
>>> -69.680720137571114 #2 \pi G Msol / pc^2

We can evaluate the flattening of the potential as \(\sqrt{|z\,F_R/R\,F_Z|}\) for a Potential instance as well as for a list of such instances

>>> mp.flattening(1.,0.125)
0.4549542914935209
>>> from galpy.potential import flattening
>>> flattening(MWPotential2014,1.,0.125)
0.61231675305658628

Densities

galpy can also calculate the densities corresponding to gravitational potentials. For many potentials, the densities are explicitly implemented, but if they are not, the density is calculated using the Poisson equation (second derivatives of the potential have to be implemented for this). For example, for the Miyamoto-Nagai potential, the density is explicitly implemented

>>> mp.dens(1.,0.)
1.1145444383277576

and we can also calculate this using the Poisson equation

>>> mp.dens(1.,0.,forcepoisson=True)
1.1145444383277574

which are the same to machine precision

>>> mp.dens(1.,0.,forcepoisson=True)-mp.dens(1.,0.)
-2.2204460492503131e-16

Similarly, all of the potentials in galpy.potential.MWPotential2014 have explicitly-implemented densities, so we can do

>>> from galpy.potential import evaluateDensities
>>> evaluateDensities(1.,0.,MWPotential2014)
0.57508603122264867

In physical coordinates, this becomes

>>> evaluateDensities(1.,0.,MWPotential2014)*bovy_conversion.dens_in_msolpc3(220.,8.)
0.1010945632524705 #Msol / pc^3

We can also plot densities

>>> from galpy.potential import plotDensities
>>> plotDensities(MWPotential2014,rmin=0.1,zmax=0.25,zmin=-0.25,nrs=101,nzs=101)

which gives

_images/MWPotential-density.png

Another example of this is for an exponential disk potential

>>> from galpy.potential import DoubleExponentialDiskPotential
>>> dp= DoubleExponentialDiskPotential(hr=1./4.,hz=1./20.,normalize=1.)

The density computed using the Poisson equation now requires multiple numerical integrations, so the agreement between the analytical density and that computed using the Poisson equation is slightly less good, but still better than a percent

>>> (dp.dens(1.,0.,forcepoisson=True)-dp.dens(1.,0.))/dp.dens(1.,0.)
0.0032522956769123019

The density is

>>> dp.plotDensity(rmin=0.1,zmax=0.25,zmin=-0.25,nrs=101,nzs=101)
_images/dp-density.png

and the potential is

>>> dp.plot(rmin=0.1,zmin=-0.25,zmax=0.25)
_images/dp-potential.png

Clearly, the potential is much less flattened than the density.

Close-to-circular orbits and orbital frequencies

We can also compute the properties of close-to-circular orbits. First of all, we can calculate the circular velocity and its derivative

>>> mp.vcirc(1.)
1.0
>>> mp.dvcircdR(1.)
-0.163777427566978

or, for lists of Potential instances

>>> from galpy.potential import vcirc
>>> vcirc(MWPotential2014,1.)
1.0
>>> from galpy.potential import dvcircdR
>>> dvcircdR(MWPotential2014,1.)
-0.10091361254334696

We can also calculate the various frequencies for close-to-circular orbits. For example, the rotational frequency

>>> mp.omegac(0.8)
1.2784598203204887
>>> from galpy.potential import omegac
>>> omegac(MWPotential2014,0.8)
1.2733514576122869

and the epicycle frequency

>>> mp.epifreq(0.8)
1.7774973530267848
>>> from galpy.potential import epifreq
>>> epifreq(MWPotential2014,0.8)
1.7452189766287691

as well as the vertical frequency

>>> mp.verticalfreq(1.0)
3.7859388972001828
>>> from galpy.potential import verticalfreq
>>> verticalfreq(MWPotential2014,1.)
2.7255405754769875

For close-to-circular orbits, we can also compute the radii of the Lindblad resonances. For example, for a frequency similar to that of the Milky Way’s bar

>>> mp.lindbladR(5./3.,m='corotation') #args are pattern speed and m of pattern
0.6027911166042229 #~ 5kpc
>>> print mp.lindbladR(5./3.,m=2)
None
>>> mp.lindbladR(5./3.,m=-2)
0.9906190683480501

The None here means that there is no inner Lindblad resonance, the m=-2 resonance is in the Solar neighborhood (see the section on the Hercules stream in this documentation).

Using interpolations of potentials

galpy contains a general Potential class interpRZPotential that can be used to generate interpolations of potentials that can be used in their stead to speed up calculations when the calculation of the original potential is computationally expensive (for example, for the DoubleExponentialDiskPotential). Full details on how to set this up are given here. Interpolated potentials can be used anywhere that general three-dimensional galpy potentials can be used. Some care must be taken with outside-the-interpolation-grid evaluations for functions that use C to speed up computations.

Adding potentials to the galpy framework

Potentials in galpy can be used in many places such as orbit integration, distribution functions, or the calculation of action-angle variables, and in most cases any instance of a potential class that inherits from the general Potential class (or a list of such instances) can be given. For example, all orbit integration routines work with any list of instances of the general Potential class. Adding new potentials to galpy therefore allows them to be used everywhere in galpy where general Potential instances can be used. Adding a new class of potentials to galpy consists of the following series of steps (some of these are also given in the file README.dev in the galpy distribution):

  1. Implement the new potential in a class that inherits from galpy.potential.Potential. The new class should have an __init__ method that sets up the necessary parameters for the class. An amplitude parameter amp= should be taken as an argument for this class and before performing any other setup, the galpy.potential.Potential.__init__(self,amp=amp) method should be called to setup the amplitude. To add support for normalizing the potential to standard galpy units, one can call the galpy.potential.Potential.normalize function at the end of the __init__ function.

The new potential class should implement some of the following functions:

  • _evaluate(self,R,z,phi=0,t=0) which evaluates the potential itself (without the amp factor, which is added in the __call__ method of the general Potential class).
  • _Rforce(self,R,z,phi=0.,t=0.) which evaluates the radial force in cylindrical coordinates (-d potential / d R).
  • _zforce(self,R,z,phi=0.,t=0.) which evaluates the vertical force in cylindrical coordinates (-d potential / d z).
  • _R2deriv(self,R,z,phi=0.,t=0.) which evaluates the second (cylindrical) radial derivative of the potential (d^2 potential / d R^2).
  • _z2deriv(self,R,z,phi=0.,t=0.) which evaluates the second (cylindrical) vertical derivative of the potential (d^2 potential / d z^2).
  • _Rzderiv(self,R,z,phi=0.,t=0.) which evaluates the mixed (cylindrical) radial and vertical derivative of the potential (d^2 potential / d R d z).
  • _dens(self,R,z,phi=0.,t=0.) which evaluates the density. If not given, the density is computed using the Poisson equation from the first and second derivatives of the potential (if all are implemented).
  • _mass(self,R,z=0.,t=0.) which evaluates the mass. For spherical potentials this should give the mass enclosed within the spherical radius; for axisymmetric potentials this should return the mass up to R and between -Z and Z. If not given, the mass is computed by integrating the density (if it is implemented or can be calculated from the Poisson equation).
  • _phiforce(self,R,z,phi=0.,t=0.): the azimuthal force in cylindrical coordinates (assumed zero if not implemented).
  • _phi2deriv(self,R,z,phi=0.,t=0.): the second azimuthal derivative of the potential in cylindrical coordinates (d^2 potential / d phi^2; assumed zero if not given).
  • _Rphideriv(self,R,z,phi=0.,t=0.): the mixed radial and azimuthal derivative of the potential in cylindrical coordinates (d^2 potential / d R d phi; assumed zero if not given).

If you want to be able to calculate the concentration for a potential, you also have to set self._scale to a scale parameter for your potential.

The code for galpy.potential.MiyamotoNagaiPotential gives a good template to follow for 3D axisymmetric potentials. Similarly, the code for galpy.potential.CosmphiDiskPotential provides a good template for 2D, non-axisymmetric potentials.

After this step, the new potential will work in any part of galpy that uses pure python potentials. To get the potential to work with the C implementations of orbit integration or action-angle calculations, the potential also has to be implemented in C and the potential has to be passed from python to C.

The __init__ method should be written in such a way that a relevant object can be initialized using Classname() (i.e., there have to be reasonable defaults given for all parameters, including the amplitude); doing this allows the nose tests for potentials to automatically check that your Potential’s potential function, force functions, second derivatives, and density (through the Poisson equation) are correctly implemented (if they are implemented). The continuous-integration platform that builds the galpy codebase upon code pushes will then automatically test all of this, streamlining push requests of new potentials.

  1. To add a C implementation of the potential, implement it in a .c file under potential_src/potential_c_ext. Look at potential_src/potential_c_ext/LogarithmicHaloPotential.c for the right format for 3D, axisymmetric potentials, or at potential_src/potential_c_ext/LopsidedDiskPotential.c for 2D, non-axisymmetric potentials.

For orbit integration, the functions such as:

  • double LogarithmicHaloPotentialRforce(double R,double Z, double phi,double t,struct potentialArg * potentialArgs)
  • double LogarithmicHaloPotentialzforce(double R,double Z, double phi,double t,struct potentialArg * potentialArgs)

are most important. For some of the action-angle calculations

  • double LogarithmicHaloPotentialEval(double R,double Z, double phi,double t,struct potentialArg * potentialArgs)

is most important (i.e., for those algorithms that evaluate the potential). The arguments of the potential are passed in a potentialArgs structure that contains args, which are the arguments that should be unpacked. Again, looking at some example code will make this clear. The potentialArgs structure is defined in potential_src/potential_c_ext/galpy_potentials.h.

3. Add the potential’s function declarations to potential_src/potential_c_ext/galpy_potentials.h

4. (4. and 5. for planar orbit integration) Edit the code under orbit_src/orbit_c_ext/integratePlanarOrbit.c to set up your new potential (in the parse_leapFuncArgs function).

5. Edit the code in orbit_src/integratePlanarOrbit.py to set up your new potential (in the _parse_pot function).

6. Edit the code under orbit_src/orbit_c_ext/integrateFullOrbit.c to set up your new potential (in the parse_leapFuncArgs_Full function).

7. Edit the code in orbit_src/integrateFullOrbit.py to set up your new potential (in the _parse_pot function).

8. (for using the actionAngleStaeckel methods in C) Edit the code in actionAngle_src/actionAngle_c_ext/actionAngle.c to parse the new potential (in the parse_actionAngleArgs function).

9. Finally, add self.hasC= True to the initialization of the potential in question (after the initialization of the super class, or otherwise it will be undone). If you have implemented the necessary second derivatives for integrating phase-space volumes, also add self.hasC_dxdv=True.

After following the relevant steps, the new potential class can be used in any galpy context in which C is used to speed up computations.

Two-dimensional disk distribution functions

galpy contains various disk distribution functions, both in two and three dimensions. This section introduces the two-dimensional distribution functions, useful for studying the dynamics of stars that stay relatively close to the mid-plane of a galaxy. The vertical motions of these stars may be approximated as being entirely decoupled from the motion in the plane.

Types of disk distribution functions

galpy contains the following distribution functions for razor-thin disks: galpy.df.dehnendf and galpy.df.shudf. These are the distribution functions of Dehnen (1999AJ....118.1201D) and Shu (1969ApJ...158..505S). Everything shown below for dehnendf can also be done for shudf.

These disk distribution functions are functions of the energy and the angular momentum alone. They can be evaluated for orbits, or for a given energy and angular momentum. At this point, only power-law rotation curves are supported. A dehnendf instance is initialized as follows

>>> from galpy.df import dehnendf
>>> dfc= dehnendf(beta=0.)

This initializes a dehnendf instance based on an exponential surface-mass profile with scale-length 1/3 and an exponential radial-velocity-dispersion profile with scale-length 1 and a value of 0.2 at R=1. Different parameters for these profiles can be provided as an initialization keyword. For example,

>>> dfc= dehnendf(beta=0.,profileParams=(1./4.,1.,0.2))

initializes the distribution function with a radial scale length of 1/4 instead.

We can show that these distribution functions have an asymmetric drift built-in by evaluating the DF at R=1. We first create a set of orbit-instances and then evaluate the DF at them

>>> from galpy.orbit import Orbit
>>> os= [Orbit([1.,0.,1.+-0.9+1.8/1000*ii]) for ii in range(1001)]
>>> dfro= [dfc(o) for o in os]
>>> plot([1.+-0.9+1.8/1000*ii for ii in range(1001)],dfro)
_images/basic-df-asydrift.png

Or we can plot the two-dimensional density at R=1.

>>> dfro= [[dfc(Orbit([1.,-0.7+1.4/200*jj,1.-0.6+1.2/200*ii])) for jj in range(201)]for ii in range(201)]
>>> dfro= numpy.array(dfro)
>>> from galpy.util.bovy_plot import bovy_dens2d
>>> bovy_dens2d(dfro,origin='lower',cmap='gist_yarg',contours=True,xrange=[-0.7,0.7],yrange=[0.4,1.6],xlabel=r'$v_R$',ylabel=r'$v_T$')
_images/basic-df-2d.png

Evaluating moments of the DF

galpy can evaluate various moments of the disk distribution functions. For example, we can calculate the mean velocities (for the DF with a scale length of 1/3 above)

>>> dfc.meanvT(1.)
0.91715276979447324
>>> dfc.meanvR(1.)
0.0

and the velocity dispersions

>>> numpy.sqrt(dfc.sigmaR2(1.))
0.19321086259083936
>>> numpy.sqrt(dfc.sigmaT2(1.))
0.15084122011271159

and their ratio

>>> dfc.sigmaR2(1.)/dfc.sigmaT2(1.)
1.6406766813028968

In the limit of zero velocity dispersion (the epicycle approximation) this ratio should be equal to 2, which we can check as follows

>>> dfccold= dehnendf(beta=0.,profileParams=(1./3.,1.,0.02))
>>> dfccold.sigmaR2(1.)/dfccold.sigmaT2(1.)
1.9947493895454664

We can also calculate higher order moments

>>> dfc.skewvT(1.)
-0.48617143862047763
>>> dfc.kurtosisvT(1.)
0.13338978593181494
>>> dfc.kurtosisvR(1.)
-0.12159407676394096

We already saw above that the velocity dispersion at R=1 is not exactly equal to the input velocity dispersion (0.19321086259083936 vs. 0.2). Similarly, the whole surface-density and velocity-dispersion profiles are not quite equal to the exponential input profiles. We can calculate the resulting surface-mass density profile using surfacemass, sigmaR2, and sigma2surfacemass. The latter calculates the product of the velocity dispersion squared and the surface-mass density. E.g.,

>>> dfc.surfacemass(1.)
0.050820867101511534

We can plot the surface-mass density as follows

>>> Rs= numpy.linspace(0.01,5.,151)
>>> out= [dfc.surfacemass(r) for r in Rs]
>>> plot(Rs, out)
_images/diskdf-surfacemass.png

or

>>> plot(Rs,numpy.log(out))
_images/diskdf-logsurfacemass.png

which shows the exponential behavior expected for an exponential disk. We can compare this to the input surface-mass density

>>> input_out= [dfc.targetSurfacemass(r) for r in Rs]
>>> plot(Rs,numpy.log(input_out)-numpy.log(out))
_images/diskdf-surfacemassdiff.png

which shows that there are significant differences between the desired surface-mass density and the actual surface-mass density. We can do the same for the velocity-dispersion profile

>>> out= [dfc.sigmaR2(r) for r in Rs]
>>> input_out= [dfc.targetSigma2(r) for r in Rs]
>>> plot(Rs,numpy.log(input_out)-numpy.log(out))
_images/diskdf-sigma2diff.png

That the input surface-density and velocity-dispersion profiles are not the same as the output profiles, means that estimates of DF properties based on these profiles will not be quite correct. Obviously this is the case for the surface-density and velocity-dispersion profiles themselves, which have to be explicitly calculated by integration over the DF rather than by evaluating the input profiles. This also means that estimates of the asymmetric drift based on the input profiles will be wrong. We can calculate the asymmetric drift at R=1 using the asymmetric drift equation derived from the Jeans equation (eq. 4.228 in Binney & Tremaine 2008), using the input surface-density and velocity dispersion profiles

>>> dfc.asymmetricdrift(1.)
0.090000000000000024

which should be equal to the circular velocity minus the mean rotational velocity

>>> 1.-dfc.meanvT(1.)
0.082847230205526756

These are not the same in part because of the difference between the input and output surface-density and velocity-dispersion profiles (and because the asymmetricdrift method assumes that the ratio of the velocity dispersions squared is two using the epicycle approximation; see above).

Using corrected disk distribution functions

As shown above, for a given surface-mass density and velocity dispersion profile, the two-dimensional disk distribution functions only do a poor job of reproducing the desired profiles. We can correct this by calculating a set of corrections to the input profiles such that the output profiles more closely resemble the desired profiles (see 1999AJ....118.1201D). galpy supports the calculation of these corrections, and comes with some pre-calculated corrections (these can be found here). For example, the following initializes a dehnendf with corrections up to 20th order (the default)

>>> dfc= dehnendf(beta=0.,correct=True)

The following figure shows the difference between the actual surface-mass density profile and the desired profile for 1, 2, 3, 4, 5, 10, 15, and 20 iterations

_images/testSurfacemassCorrections_sigma0_0.5.png

and the same for the velocity-dispersion profile

_images/testSigmaCorrections_sigma0_0.5.png

galpy will automatically save any new corrections that you calculate.

All of the methods for an uncorrected disk DF can be used for the corrected DFs as well. For example, the velocity dispersion is now

>>> numpy.sqrt(dfc.sigmaR2(1.))
0.19999985069451526

and the mean rotation velocity is

>>> dfc.meanvT(1.)
0.90355161181498711

and (correct) asymmetric drift

>>> 1.-dfc.meanvT(1.)
0.09644838818501289

That this still does not agree with the simple dfc.asymmetricdrift estimate is because of the latter’s using the epicycle approximation for the ratio of the velocity dispersions.

Oort constants and functions

galpy also contains methods to calculate the Oort functions for two-dimensional disk distribution functions. These are known as the Oort constants when measured in the solar neighborhood. They are combinations of the mean velocities and derivatives thereof. galpy calculates these by direct integration over the DF and derivatives of the DF. Thus, we can calculate

>>> dfc= dehnendf(beta=0.)
>>> dfc.oortA(1.)
0.43190780889218749
>>> dfc.oortB(1.)
-0.48524496090228575

The K and C Oort constants are zero for axisymmetric DFs

>>> dfc.oortC(1.)
0.0
>>> dfc.oortK(1.)
0.0

In the epicycle approximation, for a flat rotation curve A =- B = 0.5. The explicit calculates of A and B for warm DFs quantify how good (or bad) this approximation is

>>> dfc.oortA(1.)+dfc.oortB(1.)
-0.053337152010098254

For the cold DF from above the approximation is much better

>>> dfccold= dehnendf(beta=0.,profileParams=(1./3.,1.,0.02))
>>> dfccold.oortA(1.), dfccold.oortB(1.)
(0.49917556666144003, -0.49992824742490816)

Sampling data from the DF

We can sample from the disk distribution functions using sample. sample can return either an energy–angular-momentum pair, or a full orbit initialization. We can sample 4000 orbits for example as (could take two minutes)

>>> o= dfc.sample(n=4000,returnOrbit=True,nphi=1)

We can then plot the histogram of the sampled radii and compare it to the input surface-mass density profile

>>> Rs= [e.R() for e in o]
>>> hists, bins, edges= hist(Rs,range=[0,2],normed=True,bins=30)
>>> xs= numpy.array([(bins[ii+1]+bins[ii])/2. for ii in range(len(bins)-1)])
>>> plot(xs, xs*exp(-xs*3.)*9.,'r-')

E.g.,

_images/basic-df-sampleR.png

We can also plot the spatial distribution of the sampled disk

>>> xs= [e.x() for e in o]
>>> ys= [e.y() for e in o]
>>> figure()
>>> plot(xs,ys,',')

E.g.,

_images/basic-df-samplexy.png

We can also sample points in a specific radial range (might take a few minutes)

>>> o= dfc.sample(n=1000,returnOrbit=True,nphi=1,rrange=[0.8,1.2])

and we can plot the distribution of tangential velocities

>>> vTs= [e.vxvv[2] for e in o]
>>> hists, bins, edges= hist(vTs,range=[.5,1.5],normed=True,bins=30)
>>> xs= numpy.array([(bins[ii+1]+bins[ii])/2. for ii in range(len(bins)-1)])
>>> dfro= [dfc(Orbit([1.,0.,x]))/9./numpy.exp(-3.) for x in xs]
>>> plot(xs,dfro,'r-')
_images/basic-df-samplevT.png

The agreement between the sampled distribution and the theoretical curve is not as good because the sampled distribution has a finite radial range. If we sample 10,000 points in rrange=[0.95,1.05] the agreement is better (this takes a long time):

_images/basic-df-samplevTmore.png

We can also directly sample velocities at a given radius rather than in a range of radii. Doing this for a correct DF gives

>>> dfc= dehnendf(beta=0.,correct=True)
>>> vrvt= dfc.sampleVRVT(1.,n=10000)
>>> hists, bins, edges= hist(vrvt[:,1],range=[.5,1.5],normed=True,bins=101)
>>> xs= numpy.array([(bins[ii+1]+bins[ii])/2. for ii in range(len(bins)-1)])
>>> dfro= [dfc(Orbit([1.,0.,x])) for x in xs]
>>> plot(xs,dfro/numpy.sum(dfro)/(xs[1]-xs[0]),'r-')
_images/basic-df-samplevTatR.png

galpy further has support for sampling along a given line of sight in the disk, which is useful for interpreting surveys consisting of a finite number of pointings. For example, we can sampled distances along a given line of sight

>>> ds= dfc.sampledSurfacemassLOS(30./180.*numpy.pi,n=10000)

which is very fast. We can histogram these

>>> hists, bins, edges= hist(ds,range=[0.,3.5],normed=True,bins=101)

and compare it to the predicted distribution, which we can calculate as

>>> xs= numpy.array([(bins[ii+1]+bins[ii])/2. for ii in range(len(bins)-1)])
>>> fd= numpy.array([dfc.surfacemassLOS(d,30.) for d in xs])
>>> plot(xs,fd/numpy.sum(fd)/(xs[1]-xs[0]),'r-')

which shows very good agreement with the sampled distances

_images/basic-df-sampled.png

galpy can further sample full 4D phase–space coordinates along a given line of sight through dfc.sampleLOS.

Non-axisymmetric, time-dependent disk distribution functions

galpy also supports the evaluation of non-axisymmetric, time-dependent two-dimensional DFs. These specific DFs are constructed by assuming an initial axisymmetric steady state, described by a DF of the family discussed above, that is then acted upon by a non-axisymmetric, time-dependent perturbation. The DF at a given time and phase-space position is evaluated by integrating the orbit backwards in time in the non-axisymmetric potential until the time of the initial DF is reached. From Liouville’s theorem, which states that phase-space volume is conserved along the orbit, we then know that we can evaluate the non-axisymmetric DF today as the initial DF at the initial point on the orbit. This procedure was first used by Dehnen (2000).

This is implemented in galpy as galpy.df.evolveddiskdf. Such a DF is setup by specifying the initial DF, the non-axisymmetric potential, and the time of the initial state. For example, we can look at the effect of an elliptical perturbation to the potential like that described by Kuijken & Tremaine. To do this, we set up an elliptical perturbation to a logarithmic potential that is grown slowly to minimize non-adiabatic effects

>>> from galpy.potential import LogarithmicHaloPotential, EllipticalDiskPotential
>>> lp= LogarithmicHaloPotential(normalize=1.)
>>> ep= EllipticalDiskPotential(twophio=0.05,phib=0.,p=0.,tform=-150.,tsteady=125.)

This perturbation starts to be grown at tform=-150 over a time period of tsteady=125 time units. We will consider the effect of this perturbation on a very cold disk (velocity dispersion \(\sigma_R = 0.0125\,v_c\)) and a warm disk (\(\sigma_R = 0.15\,v_c\)). We set up these two initial DFs

>>> idfcold= dehnendf(beta=0.,profileParams=(1./3.,1.,0.0125))
>>> idfwarm= dehnendf(beta=0.,profileParams=(1./3.,1.,0.15))

and then set up the evolveddiskdf

>>> from galpy.df import evolveddiskdf
>>> edfcold= evolveddiskdf(idfcold,[lp,ep],to=-150.)
>>> edfwarm= evolveddiskdf(idfwarm,[lp,ep],to=-150.)

where we specify that the initial state is at to=-150.

We can now use these evolveddiskdf instances in much the same way as diskdf instances. One difference is that there is much more support for evaluating the DF on a grid (to help speed up the rather slow computations involved). Thus, we can evaluate the mean radial velocity at R=0.9, phi=22.5 degree, and t=0 by using a grid

>>> mvrcold, gridcold= edfcold.meanvR(0.9,phi=22.5,deg=True,t=0.,grid=True,returnGrid=True,gridpoints=51,nsigma=6.)
>>> mvrwarm, gridwarm= edfcold.meanvR(0.9,phi=22.5,deg=True,t=0.,grid=True,returnGrid=True,gridpoints=51)
>>> print mvrcold, mvrwarm
-0.0358753028951 -0.0294763627935

The cold response agrees well with the analytical calculation, which predicts that this is \(-0.05/\sqrt{2}\):

>>> print mvrcold+0.05/sqrt(2.)
-0.000519963835811

The warm response is slightly smaller in amplitude

>>> print mvrwarm/mvrcold
0.821633837619

although the numerical uncertainty in mvrwarm is large, because the grid is not sufficiently fine.

We can then re-use this grid in calculations of other moments of the DF, e.g.,

>>> print edfcold.meanvT(0.9,phi=22.5,deg=True,t=0.,grid=gridcold)
0.965058551359
>>> print edfwarm.meanvT(0.9,phi=22.5,deg=True,t=0.,grid=gridwarm)
0.915397094614

which returns the mean rotational velocity, and

>>> print edfcold.vertexdev(0.9,phi=22.5,deg=True,t=0.,grid=gridcold)
3.21160878582
>>> print edfwarm.vertexdev(0.9,phi=22.5,deg=True,t=0.,grid=gridwarm)
4.23510254333

which gives the vertex deviation. The reason we have to calculate the grid out to 6nsigma for the cold response is that the response is much bigger than the velocity dispersion of the population. This velocity dispersion is used to automatically to set the grid edges, but sometimes has to be adjusted to contain the full DF.

evolveddiskdf can also calculate the Oort functions, by directly calculating the spatial derivatives of the DF. These can also be calculated on a grid, such that we can do

>>> oortacold, gridcold, gridrcold, gridphicold= edfcold.oortA(0.9,phi=22.5,deg=True,t=0.,returnGrids=True,gridpoints=51,derivGridpoints=51,grid=True,derivphiGrid=True,derivRGrid=True,nsigma=6.)
>>> oortawarm, gridwarm, gridrwarm, gridphiwarm= edfwarm.oortA(0.9,phi=22.5,deg=True,t=0.,returnGrids=True,gridpoints=51,derivGridpoints=51,grid=True,derivphiGrid=True,derivRGrid=True)
>>> print oortacold, oortawarm
0.575494559999 0.526389833249

It is clear that these are quite different. The cold calculation is again close to the analytical prediction, which says that \(A = A_{\mathrm{axi}}+0.05/(2\sqrt{2})\) where \(A_{\mathrm{axi}} = 1/(2\times0.9)\) in this case:

>>> print oortacold-(0.5/0.9+0.05/2./sqrt(2.))
0.0022613349141670236

These grids can then be re-used for the other Oort functions, for example,

>>> print edfcold.oortB(0.9,phi=22.5,deg=True,t=0.,grid=gridcold,derivphiGrid=gridphicold,derivRGrid=gridrcold)
-0.574674310521
>>> print edfwarm.oortB(0.9,phi=22.5,deg=True,t=0.,grid=gridwarm,derivphiGrid=gridphiwarm,derivRGrid=gridrwarm)
-0.555546911144

and similar for oortC and oortK. These warm results should again be considered for illustration only, as the grid is not sufficiently fine to have a small numerical error.

The grids that have been calculated can also be plotted to show the full velocity DF. For example,

>>> gridcold.plot()

gives

_images/basic-df-nonaxi-cold.png

which demonstrates that the DF is basically the initial DF that has been displaced (by a significant amount compared to the velocity dispersion). The warm velocityd distribution is given by

>>> gridwarm.plot()

which returns

_images/basic-df-nonaxi-warm.png

The shift of the smooth DF here is much smaller than the velocity dispersion.

Example: The Hercules stream in the Solar neighborhood as a result of the Galactic bar

We can combine the orbit integration capabilities of galpy with the provided distribution functions and see the effect of the Galactic bar on stellar velocities. By backward integrating orbits starting at the Solar position in a potential that includes the Galactic bar we can evaluate what the velocity distribution is that we should see today if the Galactic bar stirred up a steady-state disk. For this we initialize a flat rotation curve potential and Dehnen’s bar potential

>>> from galpy.potential import LogarithmicHaloPotential, DehnenBarPotential
>>> lp= LogarithmicHaloPotential(normalize=1.)
>>> dp= DehnenBarPotential()

The Dehnen bar potential is initialized to start bar formation four bar periods before the present day and to have completely formed the bar two bar periods ago. We can integrate back to the time before bar-formation:

>>> ts= numpy.linspace(0,dp.tform(),1000)

where dp.tform() is the time of bar-formation (in the usual time-coordinates).

We initialize orbits on a grid in velocity space and integrate them

>>> ins=[[Orbit([1.,-0.7+1.4/100*jj,1.-0.6+1.2/100*ii,0.]) for jj in range(101)] for ii in range(101)]
>>> int=[[o.integrate(ts,[lp,dp]) for o in j] for j in ins]

We can then evaluate the weight of these orbits by assuming that the disk was in a steady-state before bar-formation with a Dehnen distribution function. We evaluate the Dehnen distribution function at dp.tform() for each of the orbits

>>> dfc= dehnendf(beta=0.,correct=True)
>>> out= [[dfc(o(dp.tform())) for o in j] for j in ins]
>>> out= numpy.array(out)

This gives

>>> from galpy.util.bovy_plot import bovy_dens2d
>>> bovy_dens2d(out,origin='lower',cmap='gist_yarg',contours=True,xrange=[-0.7,0.7],yrange=[0.4,1.6],xlabel=r'$v_R$',ylabel=r'$v_T$')
_images/diskdf-dehnenhercules.png

Now that galpy contains the evolveddiskdf described above, this whole calculation is encapsulated in this module and can be done much more easily as

>>> edf= evolveddiskdf(dfc,[lp,dp],to=dp.tform())
>>> mvr, grid= edf.meanvR(1.,grid=True,gridpoints=101,returnGrid=True)

The gridded DF can be accessed as grid.df, which we can plot as before

>>> bovy_dens2d(grid.df.T,origin='lower',cmap='gist_yarg',contours=True,xrange=[grid.vRgrid[0],grid.vRgrid[-1]],yrange=[grid.vTgrid[0],grid.vTgrid[-1]],xlabel=r'$v_R$',ylabel=r'$v_T$')
_images/diskdf-dehnenhercules-edf.png

For more information see 2000AJ....119..800D and 2010ApJ...725.1676B. Note that the x-axis in the Figure above is defined as minus the x-axis in these papers.

A closer look at orbit integration

Orbit initialization

Standard initialization

Orbits can be initialized in various coordinate frames. The simplest initialization gives the initial conditions directly in the Galactocentric cylindrical coordinate frame (or in the rectangular coordinate frame in one dimension). Orbit() automatically figures out the dimensionality of the space from the initial conditions in this case. In three dimensions initial conditions are given either as vxvv=[R,vR,vT,z,vz,phi] or one can choose not to specify the azimuth of the orbit and initialize with vxvv=[R,vR,vT,z,vz]. Since potentials in galpy are easily initialized to have a circular velocity of one at a radius equal to one, initial coordinates are best given as a fraction of the radius at which one specifies the circular velocity, and initial velocities are best expressed as fractions of this circular velocity. For example,

>>> o= Orbit(vxvv=[1.,0.1,1.1,0.,0.1,0.])

initializes a fully three-dimensional orbit, while

>>> o= Orbit(vxvv=[1.,0.1,1.1,0.,0.1])

initializes an orbit in which the azimuth is not tracked, as might be useful for axisymmetric potentials.

In two dimensions, we can similarly specify fully two-dimensional orbits o=Orbit(vxvv=[R,vR,vT,phi]) or choose not to track the azimuth and initialize with o= Orbit(vxvv=[R,vR,vT]).

In one dimension we simply initialize with o= Orbit(vxvv=[x,vx]).

Initialization with physical scales

Orbits are normally used in galpy’s natural coordinates. When Orbits are initialized using a distance scale ro= and a velocity scale vo=, then many Orbit methods return quantities in physical coordinates. Specifically, physical distance and velocity scales are specified as

>>> op= Orbit(vxvv=[1.,0.1,1.1,0.,0.1,0.],ro=8.,vo=220.)

All output quantities will then be automatically be specified in physical units: kpc for positions, km/s for velocities, (km/s)^2 for energies and the Jacobi integral, km/s kpc for the angular momentum o.L() and actions, 1/Gyr for frequencies, and Gyr for times and periods. See below for examples of this.

Physical units are only used for outputs: internally natural units are still used and inputs have to also be specified in natural units (for example, integration times or the time at which an output is requested must be specified in natural units). If for any output you do not want the output in physical units, you can specify this by supplying the keyword argument use_physical=False.

Initialization from observed coordinates

For orbit integration and characterization of observed stars or clusters, initial conditions can also be specified directly as observed quantities when radec=True is set. In this case a full three-dimensional orbit is initialized as o= Orbit(vxvv=[RA,Dec,distance,pmRA,pmDec,Vlos],radec=True) where RA and Dec are expressed in degrees, the distance is expressed in kpc, proper motions are expressed in mas/yr (pmra = pmra’ * cos[Dec] ), and the line-of-sight velocity is given in km/s. The observed epoch is currently assumed to be J2000.00. These observed coordinates are translated to the Galactocentric cylindrical coordinate frame by assuming a Solar motion that can be specified as either solarmotion=hogg (default; 2005ApJ...629..268H), solarmotion=dehnen (1998MNRAS.298..387D) or solarmotion=shoenrich (2010MNRAS.403.1829S). A circular velocity can be specified as vo=220 in km/s and a value for the distance between the Galactic center and the Sun can be given as ro=8.0 in kpc (e.g., 2012ApJ...759..131B). While the inputs are given in physical units, the orbit is initialized assuming a circular velocity of one at the distance of the Sun (that is, the orbit’s position and velocity is scaled to galpy’s natural units after converting to the Galactocentric coordinate frame, using the specified ro= and vo=). The parameters of the coordinate transformations are stored internally, such that they are automatically used for relevant outputs (for example, when the RA of an orbit is requested). An example of all of this is:

>>> o= Orbit(vxvv=[20.,30.,2.,-10.,20.,50.],radec=True,ro=8.,vo=220.)

However, the internally stored position/velocity vector is

>>> print o.vxvv
[1.1476649101960512, 0.20128601278731811, 1.8303776114906387, -0.13107066602923434, 0.58171049004255293, 0.14071341020496472]

and is therefore in natural units.

Similarly, one can also initialize orbits from Galactic coordinates using o= Orbit(vxvv=[glon,glat,distance,pmll,pmbb,Vlos],lb=True), where glon and glat are Galactic longitude and latitude expressed in degrees, and the proper motions are again given in mas/yr ((pmll = pmll’ * cos[glat] ):

>>> o= Orbit(vxvv=[20.,30.,2.,-10.,20.,50.],lb=True,ro=8.,vo=220.)
>>> print o.vxvv
[0.79998509943955398, 0.075939950035477488, 0.52838231795389867, 0.12812499999999999, 0.89052135379600328, 0.092696334097541536]

When radec=True or lb=True is set, velocities can also be specified in Galactic coordinates if UVW=True is set. The input is then vxvv=[RA,Dec,distance,U,V,W], where the velocities are expressed in km/s. U is, as usual, defined as -vR (minus vR).

When orbits are initialized using radec=True or lb=True, physical scales ro= and vo= are automatically specified (because they have defaults of ro=8 and vo=220). Therefore, all output quantities will be specified in physical units (see above). If you do want to get outputs in galpy’s natural coordinates, you can turn this behavior off by doing

>>> o.turn_physical_off()

All outputs will then be specified in galpy’s natural coordinates.

Orbit integration

After an orbit is initialized, we can integrate it for a set of times ts, given as a numpy array. For example, in a simple logarithmic potential we can do the following

>>> from galpy.potential import LogarithmicHaloPotential
>>> lp= LogarithmicHaloPotential(normalize=1.)
>>> o= Orbit(vxvv=[1.,0.1,1.1,0.,0.1,0.])
>>> import numpy
>>> ts= numpy.linspace(0,100,10000)
>>> o.integrate(ts,lp)

to integrate the orbit from t=0 to t=100, saving the orbit at 10000 instances.

If we initialize the Orbit using a distance scale ro= and a velocity scale vo=, then Orbit plots and outputs will use physical coordinates (currently, times, positions, and velocities)

>>> op= Orbit(vxvv=[1.,0.1,1.1,0.,0.1,0.],ro=8.,vo=220.) #Use Vc=220 km/s at R= 8 kpc as the normalization
>>> op.integrate(ts,lp) #times are still specified in natural coordinates

Displaying the orbit

After integrating the orbit, it can be displayed by using the plot() function. The quantities that are plotted when plot() is called depend on the dimensionality of the orbit: in 3D the (R,z) projection of the orbit is shown; in 2D either (X,Y) is plotted if the azimuth is tracked and (R,vR) is shown otherwise; in 1D (x,vx) is shown. E.g., for the example given above,

>>> o.plot()

gives

_images/lp-orbit-integration.png

If we do the same for the Orbit that has physical distance and velocity scales associated with it, we get the following

>>> op.plot()
_images/lp-orbit-integration-physical.png

If we call op.plot(use_physical=False), the quantities will be displayed in natural galpy coordinates.

Other projections of the orbit can be displayed by specifying the quantities to plot. E.g.,

>>> o.plot(d1='x',d2='y')

gives the projection onto the plane of the orbit:

_images/lp-orbit-integration-xy.png

while

>>> o.plot(d1='R',d2='vR')

gives the projection onto (R,vR):

_images/lp-orbit-integration-RvR.png

We can also plot the orbit in other coordinate systems such as Galactic longitude and latitude

>>> o.plot('k.',d1='ll',d2='bb')

which shows

_images/lp-orbit-integration-lb.png

or RA and Dec

>>> o.plot('k.',d1='ra',d2='dec')
_images/lp-orbit-integration-radec.png

See the documentation of the o.plot function and the o.ra(), o.ll(), etc. functions on how to provide the necessary parameters for the coordinate transformations.

Orbit characterization

The properties of the orbit can also be found using galpy. For example, we can calculate the peri- and apocenter radii of an orbit, its eccentricity, and the maximal height above the plane of the orbit

>>> o.rap(), o.rperi(), o.e(), o.zmax()
(1.2581455175173673,0.97981663263371377,0.12436710999105324,0.11388132751079502)

We can also calculate the energy of the orbit, either in the potential that the orbit was integrated in, or in another potential:

>>> o.E(), o.E(pot=mp)
(0.6150000000000001, -0.67390625000000015)

where mp is the Miyamoto-Nagai potential of Introduction: Rotation curves.

For the Orbit op that was initialized above with a distance scale ro= and a velocity scale vo=, these outputs are all in physical units

>>> op.rap(), op.rperi(), op.e(), op.zmax()
(10.065158988860341,7.8385312810643057,0.12436696983841462,0.91105035688072711) #kpc
>>> op.E(), op.E(pot=mp)
(29766.000000000004, -32617.062500000007) #(km/s)^2

We can also show the energy as a function of time (to check energy conservation)

>>> o.plotE(normed=True)

gives

_images/lp-orbit-integration-E.png

We can specify another quantity to plot the energy against by specifying d1=. We can also show the vertical energy, for example, as a function of R

>>> o.plotEz(d1='R',normed=True)
_images/lp-orbit-integration-Ez.png

Often, a better approximation to an integral of the motion is given by Ez/sqrt(density[R]). We refer to this quantity as EzJz and we can plot its behavior

>>> o.plotEzJz(d1='R',normed=True)
_images/lp-orbit-integration-EzJz.png

Accessing the raw orbit

The value of R, vR, vT, z, vz, x, vx, y, vy, phi, and vphi at any time can be obtained by calling the corresponding function with as argument the time (the same holds for other coordinates ra, dec, pmra, pmdec, vra, vdec, ll, bb, pmll, pmbb, vll, vbb, vlos, dist, helioX, helioY, helioZ, U, V, and W). If no time is given the initial condition is returned, and if a time is requested at which the orbit was not saved spline interpolation is used to return the value. Examples include

>>> o.R(1.)
1.1545076874679474
>>> o.phi(99.)
88.105603035901169
>>> o.ra(2.,obs=[8.,0.,0.],ro=8.)
array([ 285.76403985])
>>> o.helioX(5.)
array([ 1.24888927])
>>> o.pmll(10.,obs=[8.,0.,0.,0.,245.,0.],ro=8.,vo=230.)
array([-6.45263888])

For the Orbit op that was initialized above with a distance scale ro= and a velocity scale vo=, the first of these would be

>>> op.R(1.)
9.2360614837829225 #kpc

which we can also access in natural coordinates as

>>> op.R(1.,use_physical=False)
1.1545076854728653

We can also specify a different distance or velocity scale on the fly, e.g.,

>>> op.R(1.,ro=4.) #different velocity scale would be vo=
4.6180307418914612

We can also initialize an Orbit instance using the phase-space position of another Orbit instance evaulated at time t. For example,

>>> newOrbit= o(10.)

will initialize a new Orbit instance with as initial condition the phase-space position of orbit o at time=10..

The whole orbit can also be obtained using the function getOrbit

>>> o.getOrbit()

which returns a matrix of phase-space points with dimensions [ntimes,ndim].

Fast orbit integration

The standard orbit integration is done purely in python using standard scipy integrators. When fast orbit integration is needed for batch integration of a large number of orbits, a set of orbit integration routines are written in C that can be accessed for most potentials, as long as they have C implementations, which can be checked by using the attribute hasC

>>> mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,amp=1.,normalize=1.)
>>> mp.hasC
True

Fast C integrators can be accessed through the method= keyword of the orbit.integrate method. Currently available integrators are

  • rk4_c
  • rk6_c
  • dopr54_c

which are Runge-Kutta and Dormand-Prince methods. There are also a number of symplectic integrators available

  • leapfrog_c
  • symplec4_c
  • symplec6_c

The higher order symplectic integrators are described in Yoshida (1993).

For most applications I recommend dopr54_c. For example, compare

>>> o= Orbit(vxvv=[1.,0.1,1.1,0.,0.1])
>>> timeit(o.integrate(ts,mp))
1 loops, best of 3: 553 ms per loop
>>> timeit(o.integrate(ts,mp,method='dopr54_c'))
galpyWarning: Using C implementation to integrate orbits
10 loops, best of 3: 25.6 ms per loop

As this example shows, galpy will issue a warning that C is being used. Speed-ups by a factor of 20 are typical.

Integration of the phase-space volume

galpy further supports the integration of the phase-space volume through the method integrate_dxdv, although this is currently only implemented for two-dimensional orbits (planarOrbit). As an example, we can check Liouville’s theorem explicitly. We initialize the orbit

>>> o= Orbit(vxvv=[1.,0.1,1.1,0.])

and then integrate small deviations in each of the four phase-space directions

>>> ts= numpy.linspace(0.,28.,1001) #~1 Gyr at the Solar circle
>>> o.integrate_dxdv([1.,0.,0.,0.],ts,mp,method='dopr54_c',rectIn=True,rectOut=True)
>>> dx= o.getOrbit_dxdv()[-1,:] # evolution of dxdv[0] along the orbit
>>> o.integrate_dxdv([0.,1.,0.,0.],ts,mp,method='dopr54_c',rectIn=True,rectOut=True)
>>> dy= o.getOrbit_dxdv()[-1,:]
>>> o.integrate_dxdv([0.,0.,1.,0.],ts,mp,method='dopr54_c',rectIn=True,rectOut=True)
>>> dvx= o.getOrbit_dxdv()[-1,:]
>>> o.integrate_dxdv([0.,0.,0.,1.],ts,mp,method='dopr54_c',rectIn=True,rectOut=True)
>>> dvy= o.getOrbit_dxdv()[-1,:]

We can then compute the determinant of the Jacobian of the mapping defined by the orbit integration from time zero to the final time

>>> tjac= numpy.linalg.det(numpy.array([dx,dy,dvx,dvy]))

This determinant should be equal to one

>>> print tjac
0.999999991189
>>> numpy.fabs(tjac-1.) < 10.**-8.
True

The calls to integrate_dxdv above set the keywords rectIn= and rectOut= to True, as the default input and output uses phase-space volumes defined as (dR,dvR,dvT,dphi) in cylindrical coordinates. When rectIn or rectOut is set, the in- or output is in rectangular coordinates ([x,y,vx,vy] in two dimensions).

Implementing the phase-space integration for three-dimensional FullOrbit instances is straightforward and is part of the longer term development plan for galpy. Let the main developer know if you would like this functionality, or better yet, implement it yourself in a fork of the code and send a pull request!

Example: The eccentricity distribution of the Milky Way’s thick disk

A straightforward application of galpy’s orbit initialization and integration capabilities is to derive the eccentricity distribution of a set of thick disk stars. We start by downloading the sample of SDSS SEGUE (2009AJ....137.4377Y) thick disk stars compiled by Dierickx et al. (2010arXiv1009.1616D) at

http://www.mpia-hd.mpg.de/homes/rix/Data/Dierickx-etal-tab2.txt

After reading in the data (RA,Dec,distance,pmRA,pmDec,vlos; see above) as a vector vxvv with dimensions [6,ndata] we (a) define the potential in which we want to integrate the orbits, and (b) integrate each orbit and save its eccentricity (running this for all 30,000-ish stars will take about half an hour)

>>> lp= LogarithmicHaloPotential(normalize=1.)
>>> ts= nu.linspace(0.,20.,10000)
>>> mye= nu.zeros(ndata)
>>> for ii in range(len(e)):
...         o= Orbit(vxvv[ii,:],radec=True,vo=220.,ro=8.) #Initialize
...         o.integrate(ts,lp) #Integrate
...         mye[ii]= o.e() #Calculate eccentricity

We then find the following eccentricity distribution

_images/dierickx-myehist.png

The eccentricity calculated by galpy compare well with those calculated by Dierickx et al., except for a few objects

_images/dierickx-myee.png

The script that calculates and plots everything can be downloaded here.

Action-angle coordinates

galpy can calculate actions and angles for a large variety of potentials (any time-independent potential in principle). These are implemented in a separate module galpy.actionAngle, and the preferred method for accessing them is through the routines in this module. There is also some support for accessing the actionAngle routines as methods of the Orbit class.

Action-angle coordinates can be calculated for the following potentials/approximations:

  • Isochrone potential
  • Spherical potentials
  • Adiabatic approximation
  • Staeckel approximation
  • A general orbit-integration-based technique

There are classes corresponding to these different potentials/approximations and actions, frequencies, and angles can typically be calculated using these three methods:

  • __call__: returns the actions
  • actionsFreqs: returns the actions and the frequencies
  • actionsFreqsAngles: returns the actions, frequencies, and angles

These are not all implemented for each of the cases above yet.

The adiabatic and Staeckel approximation have also been implemented in C and using grid-based interpolation, for extremely fast action-angle calculations (see below).

Action-angle coordinates for the isochrone potential

The isochrone potential is the only potential for which all of the actions, frequencies, and angles can be calculated analytically. We can do this in galpy by doing

>>> from galpy.potential import IsochronePotential
>>> from galpy.actionAngle import actionAngleIsochrone
>>> ip= IsochronePotential(b=1.,normalize=1.)
>>> aAI= actionAngleIsochrone(ip=ip)

aAI is now an instance that can be used to calculate action-angle variables for the specific isochrone potential ip. Calling this instance returns \((J_R,L_Z,J_Z)\)

>>> aAI(1.,0.1,1.1,0.1,0.) #inputs R,vR,vT,z,vz
(array([ 0.00713759]), array([ 1.1]), array([ 0.00553155]))

or for a more eccentric orbit

>>> aAI(1.,0.5,1.3,0.2,0.1)
(array([ 0.13769498]), array([ 1.3]), array([ 0.02574507]))

Note that we can also specify phi, but this is not necessary

>>> aAI(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.13769498]), array([ 1.3]), array([ 0.02574507]))

We can likewise calculate the frequencies as well

>>> aAI.actionsFreqs(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.13769498]),
 array([ 1.3]),
 array([ 0.02574507]),
 array([ 1.29136096]),
 array([ 0.79093738]),
 array([ 0.79093738]))

The output is \((J_R,L_Z,J_Z,\Omega_R,\Omega_\phi,\Omega_Z)\). For any spherical potential, \(\Omega_\phi = \mathrm{sgn}(L_Z)\Omega_Z\), such that the last two frequencies are the same.

We obtain the angles as well by calling

>>> aAI.actionsFreqsAngles(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.13769498]),
 array([ 1.3]),
 array([ 0.02574507]),
 array([ 1.29136096]),
 array([ 0.79093738]),
 array([ 0.79093738]),
 array([ 0.57101518]),
 array([ 5.96238847]),
 array([ 1.24999949]))

The output here is \((J_R,L_Z,J_Z,\Omega_R,\Omega_\phi,\Omega_Z,\theta_R,\theta_\phi,\theta_Z)\).

To check that these are good action-angle variables, we can calculate them along an orbit

>>> from galpy.orbit import Orbit
>>> o= Orbit([1.,0.5,1.3,0.2,0.1,0.])
>>> ts= numpy.linspace(0.,100.,1001)
>>> o.integrate(ts,ip)
>>> jfa= aAI.actionsFreqsAngles(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts),o.phi(ts))

which works because we can provide arrays for the R etc. inputs.

We can then check that the actions are constant over the orbit

>>> plot(ts,numpy.log10(numpy.fabs((jfa[0]-numpy.mean(jfa[0])))))
>>> plot(ts,numpy.log10(numpy.fabs((jfa[1]-numpy.mean(jfa[1])))))
>>> plot(ts,numpy.log10(numpy.fabs((jfa[2]-numpy.mean(jfa[2])))))

which gives

_images/ip-actions.png

The actions are all conserved. The angles increase linearly with time

>>> plot(ts,jfa[6],'b.')
>>> plot(ts,jfa[7],'g.')
>>> plot(ts,jfa[8],'r.')
_images/ip-tangles.png

Action-angle coordinates for spherical potentials

Action-angle coordinates for any spherical potential can be calculated using a few orbit integrations. These are implemented in galpy in the actionAngleSpherical module. For example, we can do

>>> from galpy.potential import LogarithmicHaloPotential
>>> lp= LogarithmicHaloPotential(normalize=1.)
>>> from galpy.actionAngle import actionAngleSpherical
>>> aAS= actionAngleSpherical(pot=lp)

For the same eccentric orbit as above we find

>>> aAS(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.22022112]), array([ 1.3]), array([ 0.02574507]))
>>> aAS.actionsFreqs(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.22022112]),
 array([ 1.3]),
 array([ 0.02574507]),
 array([ 0.87630459]),
 array([ 0.60872881]),
 array([ 0.60872881]))
>>> aAS.actionsFreqsAngles(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.22022112]),
 array([ 1.3]),
 array([ 0.02574507]),
 array([ 0.87630459]),
 array([ 0.60872881]),
 array([ 0.60872881]),
 array([ 0.40443857]),
 array([ 5.85965048]),
 array([ 1.1472615]))

We can again check that the actions are conserved along the orbit and that the angles increase linearly with time:

>>> o.integrate(ts,lp)
>>> jfa= aAS.actionsFreqsAngles(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts),o.phi(ts),fixed_quad=True)

where we use fixed_quad=True for a faster evaluation of the required one-dimensional integrals using Gaussian quadrature. We then plot the action fluctuations

>>> plot(ts,numpy.log10(numpy.fabs((jfa[0]-numpy.mean(jfa[0])))))
>>> plot(ts,numpy.log10(numpy.fabs((jfa[1]-numpy.mean(jfa[1])))))
>>> plot(ts,numpy.log10(numpy.fabs((jfa[2]-numpy.mean(jfa[2])))))

which gives

_images/lp-actions.png

showing that the actions are all conserved. The angles again increase linearly with time

>>> plot(ts,jfa[6],'b.')
>>> plot(ts,jfa[7],'g.')
>>> plot(ts,jfa[8],'r.')
_images/lp-tangles.png

We can check the spherical action-angle calculations against the analytical calculations for the isochrone potential. Starting again from the isochrone potential used in the previous section

>>> ip= IsochronePotential(b=1.,normalize=1.)
>>> aAI= actionAngleIsochrone(ip=ip)
>>> aAS= actionAngleSpherical(pot=ip)

we can compare the actions, frequencies, and angles computed using both

>>> aAI.actionsFreqsAngles(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.13769498]),
 array([ 1.3]),
 array([ 0.02574507]),
 array([ 1.29136096]),
 array([ 0.79093738]),
 array([ 0.79093738]),
 array([ 0.57101518]),
 array([ 5.96238847]),
 array([ 1.24999949]))
>>> aAS.actionsFreqsAngles(1.,0.5,1.3,0.2,0.1,0.)
(array([ 0.13769498]),
 array([ 1.3]),
 array([ 0.02574507]),
 array([ 1.29136096]),
 array([ 0.79093738]),
 array([ 0.79093738]),
 array([ 0.57101518]),
 array([ 5.96238838]),
 array([ 1.2499994]))

or more explicitly comparing the two

>>> [r-s for r,s in zip(aAI.actionsFreqsAngles(1.,0.5,1.3,0.2,0.1,0.),aAS.actionsFreqsAngles(1.,0.5,1.3,0.2,0.1,0.))]
[array([  6.66133815e-16]),
 array([ 0.]),
 array([ 0.]),
 array([ -4.53851845e-10]),
 array([  4.74775219e-10]),
 array([  4.74775219e-10]),
 array([ -1.65965242e-10]),
 array([  9.04759645e-08]),
 array([  9.04759649e-08])]

Action-angle coordinates using the adiabatic approximation

For non-spherical, axisymmetric potentials galpy contains multiple methods for calculating approximate action–angle coordinates. The simplest of those is the adiabatic approximation, which works well for disk orbits that do not go too far from the plane, as it assumes that the vertical motion is decoupled from that in the plane (e.g., 2010MNRAS.401.2318B).

Setup is similar as for other actionAngle objects

>>> from galpy.potential import MWPotential2014
>>> from galpy.actionAngle import actionAngleAdiabatic
>>> aAA= actionAngleAdiabatic(pot=MWPotential2014)

and evaluation then proceeds similarly as before

>>> aAA(1.,0.1,1.1,0.,0.05)
(0.01351896260559274, 1.1, 0.0004690133479435352)

We can again check that the actions are conserved along the orbit

>>> from galpy.orbit import Orbit
>>> ts=numpy.linspace(0.,100.,1001)
>>> o= Orbit([1.,0.1,1.1,0.,0.05])
>>> o.integrate(ts,MWPotential2014)
>>> js= aAA(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts))

This takes a while. The adiabatic approximation is also implemented in C, which leads to great speed-ups. Here is how to use it

>>> timeit(aAA(1.,0.1,1.1,0.,0.05))
10 loops, best of 3: 73.7 ms per loop
>>> aAA= actionAngleAdiabatic(pot=MWPotential2014,c=True)
>>> timeit(aAA(1.,0.1,1.1,0.,0.05))
1000 loops, best of 3: 1.3 ms per loop

or about a 50 times speed-up. For arrays the speed-up is even more impressive

>>> s= numpy.ones(100)
>>> timeit(aAA(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
10 loops, best of 3: 37.8 ms per loop
>>> aAA= actionAngleAdiabatic(pot=MWPotential2014) #back to no C
>>> timeit(aAA(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
1 loops, best of 3: 7.71 s per loop

or a speed-up of 200! Back to the previous example, you can run it with c=True to speed up the computation

>>> aAA= actionAngleAdiabatic(pot=MWPotential2014,c=True)
>>> js= aAA(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts))

We can plot the radial- and vertical-action fluctuation as a function of time

>>> plot(ts,numpy.log10(numpy.fabs((js[0]-numpy.mean(js[0]))/numpy.mean(js[0]))))
>>> plot(ts,numpy.log10(numpy.fabs((js[2]-numpy.mean(js[2]))/numpy.mean(js[2]))))

which gives

_images/MWPotential-adactions.png

The radial action is conserved to about half a percent, the vertical action to two percent.

Another way to speed up the calculation of actions using the adiabatic approximation is to tabulate the actions on a grid in (approximate) integrals of the motion and evaluating new actions by interpolating on this grid. How this is done in practice is described in detail in the galpy paper. To setup this grid-based interpolation method, which is contained in actionAngleAdiabaticGrid, do

>>> from galpy.actionAngle import actionAngleAdiabaticGrid
>>> aAG= actionAngleAdiabaticGrid(pot=MWPotential2014,nR=31,nEz=31,nEr=51,nLz=51,c=True)

where c=True specifies that we use the C implementation of actionAngleAdiabatic for speed. We can now evaluate in the same was as before, for example

>>> aAA(1.,0.1,1.1,0.,0.05), aAG(1.,0.1,1.1,0.,0.05)
((array([ 0.01352523]), array([ 1.1]), array([ 0.00046909])),
 (0.013527010324238781, 1.1, 0.00047747359874375148))

which agree very well. To look at the timings, we first switch back to not using C and then list all of the relevant timings:

>>> aAA= actionAngleAdiabatic(pot=MWPotential2014,c=False)
# Not using C, direct calculation
>>> timeit(aAA(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
1 loops, best of 3: 9.05 s per loop
>>> aAA= actionAngleAdiabatic(pot=MWPotential2014,c=True)
# Using C, direct calculation
>>> timeit(aAA(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
10 loops, best of 3: 39.7 ms per loop
# Grid-based calculation
>>> timeit(aAG(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
1000 loops, best of 3: 1.09 ms per loop

Thus, in this example (and more generally) the grid-based calculation is significantly faster than even the direct implementation in C. The overall speed up between the direct Python version and the grid-based version is larger than 8,000; the speed up between the direct C version and the grid-based version is 36. For larger arrays of input phase-space positions, the latter speed up can increase to 150. For simpler, fully analytical potentials the speed up will be slightly less, but for MWPotential2014 and other more complicated potentials (such as those involving a double-exponential disk), the overhead of setting up the grid is worth it when evaluating more than a few thousand actions.

The adiabatic approximation works well for orbits that stay close to the plane. The orbit we have been considering so far only reaches a height two percent of \(R_0\), or about 150 pc for \(R_0 = 8\) kpc.

>>> o.zmax()*8.
0.17903686455491979

For orbits that reach distances of a kpc and more from the plane, the adiabatic approximation does not work as well. For example,

>>> o= Orbit([1.,0.1,1.1,0.,0.25])
>>> o.integrate(ts,MWPotential2014)
>>> o.zmax()*8.
1.3506059038621048

and we can again calculate the actions along the orbit

>>> js= aAA(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts))
>>> plot(ts,numpy.log10(numpy.fabs((js[0]-numpy.mean(js[0]))/numpy.mean(js[0]))))
>>> plot(ts,numpy.log10(numpy.fabs((js[2]-numpy.mean(js[2]))/numpy.mean(js[2]))))

which gives

_images/MWPotential-adactions-highz.png

The radial action is now only conserved to about ten percent and the vertical action to approximately five percent.

Warning

Frequencies and angles using the adiabatic approximation are not implemented at this time.

Action-angle coordinates using the Staeckel approximation

A better approximation than the adiabatic one is to locally approximate the potential as a Staeckel potential, for which actions, frequencies, and angles can be calculated through numerical integration. galpy contains an implementation of the algorithm of Binney (2012; 2012MNRAS.426.1324B), which accomplishes the Staeckel approximation for disk-like (i.e., oblate) potentials without explicitly fitting a Staeckel potential. For all intents and purposes the adiabatic approximation is made obsolete by this new method, which is as fast and more precise. The only advantage of the adiabatic approximation over the Staeckel approximation is that the Staeckel approximation requires the user to specify a focal length \(\Delta\) to be used in the Staeckel approximation. However, this focal length can be easily estimated from the second derivatives of the potential (see Sanders 2012; 2012MNRAS.426..128S).

Starting from the second orbit example in the adiabatic section above, we first estimate a good focal length of the MWPotential2014 to use in the Staeckel approximation. We do this by averaging (through the median) estimates at positions around the orbit (which we integrated in the example above)

>>> from galpy.actionAngle import estimateDeltaStaeckel
>>> estimateDeltaStaeckel(o.R(ts),o.z(ts),pot=MWPotential2014)
0.40272708556203662

We will use \(\Delta = 0.4\) in what follows. We set up the actionAngleStaeckel object

>>> from galpy.actionAngle import actionAngleStaeckel
>>> aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.4,c=False) #c=True is the default

and calculate the actions

>>> aAS(o.R(),o.vR(),o.vT(),o.z(),o.vz())
(0.019212848866725911, 1.1000000000000001, 0.015274597971510892)

The adiabatic approximation from above gives

>>> aAA(o.R(),o.vR(),o.vT(),o.z(),o.vz())
(array([ 0.01686478]), array([ 1.1]), array([ 0.01590001]))

The actionAngleStaeckel calculations are sped up in two ways. First, the action integrals can be calculated using Gaussian quadrature by specifying fixed_quad=True

>>> aAS(o.R(),o.vR(),o.vT(),o.z(),o.vz(),fixed_quad=True)
(0.01922167296633687, 1.1000000000000001, 0.015276825017286706)

which in itself leads to a ten times speed up

>>> timeit(aAS(o.R(),o.vR(),o.vT(),o.z(),o.vz(),fixed_quad=False))
10 loops, best of 3: 129 ms per loop
>>> timeit(aAS(o.R(),o.vR(),o.vT(),o.z(),o.vz(),fixed_quad=True))
100 loops, best of 3: 10.3 ms per loop

Second, the actionAngleStaeckel calculations have also been implemented in C, which leads to even greater speed-ups, especially for arrays

>>> aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.4,c=True)
>>> s= numpy.ones(100)
>>> timeit(aAS(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
10 loops, best of 3: 35.1 ms per loop
>>> aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.4,c=False) #back to no C
>>> timeit(aAS(1.*s,0.1*s,1.1*s,0.*s,0.05*s,fixed_quad=True))
1 loops, best of 3: 496 ms per loop

or a fifteen times speed up. The speed up is not that large because the bulge model in MWPotential2014 requires expensive special functions to be evaluated. Computations could be sped up ten times more when using a simpler bulge model.

Similar to actionAngleAdiabaticGrid, we can also tabulate the actions on a grid of (approximate) integrals of the motion and interpolate over this look-up table when evaluating new actions. The details of how this look-up table is setup and used are again fully explained in the galpy paper. To use this grid-based Staeckel approximation, contained in actionAngleStaeckelGrid, do

>>> from galpy.actionAngle import actionAngleStaeckelGrid
>>> aASG= actionAngleStaeckelGrid(pot=MWPotential2014,delta=0.4,nE=51,npsi=51,nLz=61,c=True)

where c=True makes sure that we use the C implementation of the Staeckel method to calculate the grid. Because this is a fully three-dimensional grid, setting up the grid takes longer than it does for the adiabatic method (which only uses two two-dimensional grids). We can then evaluate actions as before

>>> aAS(o.R(),o.vR(),o.vT(),o.z(),o.vz()), aASG(o.R(),o.vR(),o.vT(),o.z(),o.vz())
((0.019212848866725911, 1.1000000000000001, 0.015274597971510892),
 (0.019221119033345408, 1.1000000000000001, 0.015022528662310393))

These actions agree very well. We can compare the timings of these methods as above

>>> timeit(aAS(1.*s,0.1*s,1.1*s,0.*s,0.05*s,fixed_quad=True))
1 loops, best of 3: 576 ms per loop # Not using C, direct calculation
>>> aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.4,c=True)
>>> timeit(aAS(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
100 loops, best of 3: 17.8 ms per loop # Using C, direct calculation
>>> timeit(aASG(1.*s,0.1*s,1.1*s,0.*s,0.05*s))
100 loops, best of 3: 3.45 ms per loop # Grid-based calculation

This demonstrates that the grid-based interpolation again leeds to a significant speed up, even over the C implementation of the direct calculation. This speed up becomes more significant for larger array input, although it saturates at about 25 times (at least for MWPotential2014).

We can now go back to checking that the actions are conserved along the orbit (going back to the c=False version of actionAngleStaeckel)

>>> aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.4,c=False)
>>> js= aAS(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts),fixed_quad=True)
>>> plot(ts,numpy.log10(numpy.fabs((js[0]-numpy.mean(js[0]))/numpy.mean(js[0]))))
>>> plot(ts,numpy.log10(numpy.fabs((js[2]-numpy.mean(js[2]))/numpy.mean(js[2]))))

which gives

_images/MWPotential-stactions-highz.png

The radial action is now conserved to better than a percent and the vertical action to only a fraction of a percent. Clearly, this is much better than the five to ten percent errors found for the adiabatic approximation above.

For the Staeckel approximation we can also calculate frequencies and angles through the actionsFreqs and actionsFreqsAngles methods.

Warning

Frequencies and angles using the Staeckel approximation are only implemented in C. So use c=True in the setup of the actionAngleStaeckel object.

Warning

Angles using the Staeckel approximation in galpy are such that (a) the radial angle starts at zero at pericenter and increases then going toward apocenter; (b) the vertical angle starts at zero at z=0 and increases toward positive zmax. The latter is a different convention from that in Binney (2012), but is consistent with that in actionAngleIsochrone and actionAngleSpherical.

>>> aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.4,c=True)
>>> o= Orbit([1.,0.1,1.1,0.,0.25,0.]) #need to specify phi for angles
>>> aAS.actionsFreqsAngles(o.R(),o.vR(),o.vT(),o.z(),o.vz(),o.phi())
(array([ 0.01922167]),
 array([ 1.1]),
 array([ 0.01527683]),
 array([ 1.11317796]),
 array([ 0.82538032]),
 array([ 1.34126138]),
 array([ 0.37758087]),
 array([ 6.17833493]),
 array([ 6.13368239]))

and we can check that the angles increase linearly along the orbit

>>> o.integrate(ts,MWPotential2014)
>>> jfa= aAS.actionsFreqsAngles(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts),o.phi(ts))
>>> plot(ts,jfa[6],'b.')
>>> plot(ts,jfa[7],'g.')
>>> plot(ts,jfa[8],'r.')
_images/MWPotential-tangles.png

or

>>> plot(jfa[6],jfa[8],'b.')
_images/MWPotential-angles.png

Action-angle coordinates using an orbit-integration-based approximation

The adiabatic and Staeckel approximations used above are good for stars on close-to-circular orbits, but they break down for more eccentric orbits (specifically, orbits for which the radial and/or vertical action is of a similar magnitude as the angular momentum). This is because the approximations made to the potential in these methods (that it is separable in R and z for the adiabatic approximation and that it is close to a Staeckel potential for the Staeckel approximation) break down for such orbits. Unfortunately, these methods cannot be refined to provide better approximations for eccentric orbits.

galpy contains a new method for calculating actions, frequencies, and angles that is completely general for any static potential. It can calculate the actions to any desired precision for any orbit in such potentials. The method works by employing an auxiliary isochrone potential and calculates action-angle variables by arithmetic operations on the actions and angles calculated in the auxiliary potential along an orbit (integrated in the true potential). Full details can be found in Appendix A of Bovy (2014).

We setup this method for a logarithmic potential as follows

>>> from galpy.actionAngle import actionAngleIsochroneApprox
>>> from galpy.potential import LogarithmicHaloPotential
>>> lp= LogarithmicHaloPotential(normalize=1.,q=0.9)
>>> aAIA= actionAngleIsochroneApprox(pot=lp,b=0.8)

b=0.8 here sets the scale parameter of the auxiliary isochrone potential; this potential can also be specified as an IsochronePotential instance through ip=). We can now calculate the actions for an orbit similar to that of the GD-1 stream

>>> obs= numpy.array([1.56148083,0.35081535,-1.15481504,0.88719443,-0.47713334,0.12019596]) #orbit similar to GD-1
>>> aAIA(*obs)
(array([ 0.16605011]), array([-1.80322155]), array([ 0.50704439]))

An essential requirement of this method is that the angles calculated in the auxiliary potential go through the full range \([0,2\pi]\). If this is not the case, galpy will raise a warning

>>> aAIA= actionAngleIsochroneApprox(pot=lp,b=10.8)
>>> aAIA(*obs)
galpyWarning: Full radial angle range not covered for at least one object; actions are likely not reliable
(array([ 0.08985167]), array([-1.80322155]), array([ 0.50849276]))

Therefore, some care should be taken to choosing a good auxiliary potential. galpy contains a method to estimate a decent scale parameter for the auxiliary scale parameter, which works similar to estimateDeltaStaeckel above except that it also gives a minimum and maximum b if multiple R and z are given

>>> from galpy.actionAngle import estimateBIsochrone
>>> from galpy.orbit import Orbit
>>> o= Orbit(obs)
>>> ts= numpy.linspace(0.,100.,1001)
>>> o.integrate(ts,lp)
>>> estimateBIsochrone(o.R(ts),o.z(ts),pot=lp)
(0.78065062339131952, 1.2265541473461612, 1.4899326335155412) #bmin,bmedian,bmax over the orbit

Experience shows that a scale parameter somewhere in the range returned by this function makes sure that the angles go through the full \([0,2\pi]\) range. However, even if the angles go through the full range, the closer the angles increase to linear, the better the converenge of the algorithm is (and especially, the more accurate the calculation of the frequencies and angles is, see below). For example, for the scale parameter at the upper and of the range

>>> aAIA= actionAngleIsochroneApprox(pot=lp,b=1.5)
>>> aAIA(*obs)
(array([ 0.01120145]), array([-1.80322155]), array([ 0.50788893]))

which does not agree with the previous calculation. We can inspect how the angles increase and how the actions converge by using the aAIA.plot function. For example, we can plot the radial versus the vertical angle in the auxiliary potential

>>> aAIA.plot(*obs,type='araz')

which gives

_images/aAIA-b1.5-araz.png

and this clearly shows that the angles increase very non-linearly, because the auxiliary isochrone potential used is too far from the real potential. This causes the actions to converge only very slowly. For example, for the radial action we can plot the converge as a function of integration time

>>> aAIA.plot(*obs,type='jr')

which gives

_images/aAIA-b1.5-jr.png

This Figure clearly shows that the radial action has not converged yet. We need to integrate much longer in this auxiliary potential to obtain convergence and because the angles increase so non-linearly, we also need to integrate the orbit much more finely:

>>> aAIA= actionAngleIsochroneApprox(pot=lp,b=1.5,tintJ=1000,ntintJ=800000)
>>> aAIA(*obs)
(array([ 0.01711635]), array([-1.80322155]), array([ 0.51008058]))
>>> aAIA.plot(*obs,type='jr')

which shows slow convergence

_images/aAIA-b1.5-jrlong.png

Finding a better auxiliary potential makes convergence much faster and also allows the frequencies and the angles to be calculated by removing the small wiggles in the auxiliary angles vs. time (in the angle plot above, the wiggles are much larger, such that removing them is hard). The auxiliary potential used above had b=0.8, which shows very quick converenge and good behavior of the angles

>>> aAIA= actionAngleIsochroneApprox(pot=lp,b=0.8)
>>> aAIA.plot(*obs,type='jr')

gives

_images/aAIA-b0.8-jr.png

and

>>> aAIA.plot(*obs,type='araz')

gives

_images/aAIA-b0.8-araz.png

We can remove the periodic behavior from the angles, which clearly shows that they increase close-to-linear with time

>>> aAIA.plot(*obs,type='araz',deperiod=True)
_images/aAIA-b0.8-arazdeperiod.png

We can then calculate the frequencies and the angles for this orbit as

>>> aAIA.actionsFreqsAngles(*obs)
(array([ 0.16392384]),
 array([-1.80322155]),
 array([ 0.50999882]),
 array([ 0.55808933]),
 array([-0.38475753]),
 array([ 0.42199713]),
 array([ 0.18739688]),
 array([ 0.3131815]),
 array([ 2.18425661]))

This function takes as an argument maxn= the maximum n for which to remove sinusoidal wiggles. So we can raise this, for example to 4 from 3

>>> aAIA.actionsFreqsAngles(*obs,maxn=4)
(array([ 0.16392384]),
 array([-1.80322155]),
 array([ 0.50999882]),
 array([ 0.55808776]),
 array([-0.38475733]),
 array([ 0.4219968]),
 array([ 0.18732009]),
 array([ 0.31318534]),
 array([ 2.18421296]))

Clearly, there is very little change, as most of the wiggles are of low n.

Warning

While the orbit-based actionAngle technique in principle works for triaxial potentials, angles and frequencies for non-axisymmetric potentials are not implemented yet.

This technique also works for triaxial potentials, but using those requires the code to also use the azimuthal angle variable in the auxiliary potential (this is unnecessary in axisymmetric potentials as the z component of the angular momentum is conserved). We can calculate actions for triaxial potentials by specifying that nonaxi=True:

>>> aAIA(*obs,nonaxi=True)
(array([ 0.16605011]), array([-1.80322155]), array([ 0.50704439]))

galpy currently does not contain any triaxial potentials, so we cannot illustrate this here with any real triaxial potentials.

Accessing action-angle coordinates for Orbit instances

While the recommended way to access the actionAngle routines is through the methods in the galpy.actionAngle modules, action-angle coordinates can also be cacluated for galpy.orbit.Orbit instances. This is illustrated here briefly. We initialize an Orbit instance

>>> from galpy.orbit import Orbit
>>> from galpy.potential import MWPotential2014
>>> o= Orbit([1.,0.1,1.1,0.,0.25,0.])

and we can then calculate the actions (default is to use the adiabatic approximation)

>>> o.jr(MWPotential2014), o.jp(MWPotential2014), o.jz(MWPotential2014)
(0.01685643005901713, 1.1, 0.015897730620467752)

o.jp here gives the azimuthal action (which is the z component of the angular momentum for axisymmetric potentials). We can also use the other methods described above, but note that these require extra parameters related to the approximation to be specified (see above):

>>> o.jr(MWPotential2014,type='staeckel',delta=0.4), o.jp(MWPotential2014,type='staeckel',delta=0.4), o.jz(MWPotential2014,type='staeckel',delta=0.4)
(array([ 0.01922167]), array([ 1.1]), array([ 0.01527683]))
>>> o.jr(MWPotential2014,type='isochroneApprox',b=0.8), o.jp(MWPotential2014,type='isochroneApprox',b=0.8), o.jz(MWPotential2014,type='isochroneApprox',b=0.8)
(array([ 0.01906609]), array([ 1.1]), array([ 0.01528049]))

These two methods give very precise actions for this orbit (both are converged to about 1%) and they agree very well

>>> (o.jr(MWPotential2014,type='staeckel',delta=0.4)-o.jr(MWPotential2014,type='isochroneApprox',b=0.8))/o.jr(MWPotential2014,type='isochroneApprox',b=0.8)
array([ 0.00816012])
>>>  (o.jz(MWPotential2014,type='staeckel',delta=0.4)-o.jz(MWPotential2014,type='isochroneApprox',b=0.8))/o.jz(MWPotential2014,type='isochroneApprox',b=0.8)
array([-0.00024])

Warning

Once an action, frequency, or angle is calculated for a given type of calculation (e.g., staeckel), the parameters for that type are fixed in the Orbit instance. Call o.resetaA() to reset the action-angle instance used when using different parameters (i.e., different delta= for staeckel or different b= for isochroneApprox.

We can also calculate the frequencies and the angles. This requires using the Staeckel or Isochrone approximations, because frequencies and angles are currently not supported for the adiabatic approximation. For example, the radial frequency

>>> o.Or(MWPotential2014,type='staeckel',delta=0.4)
1.1131779637307115
>>> o.Or(MWPotential2014,type='isochroneApprox',b=0.8)
1.1134635974560649

and the radial angle

>>> o.wr(MWPotential2014,type='staeckel',delta=0.4)
0.37758086786371969
>>> o.wr(MWPotential2014,type='isochroneApprox',b=0.8)
0.38159809018175395

which again agree to 1%. We can also calculate the other frequencies, angles, as well as periods using the functions o.Op, o.oz, o.wp, o.wz, o.Tr, o.Tp, o.Tz.

Example: Evidence for a Lindblad resonance in the Solar neighborhood

We can use galpy to calculate action-angle coordinates for a set of stars in the Solar neighborhood and look for unexplained features. For this we download the data from the Geneva-Copenhagen Survey (2009A&A...501..941H; data available at viZier). Since the velocities in this catalog are given as U,V, and W, we use the radec and UVW keywords to initialize the orbits from the raw data. For each object ii

>>> o= Orbit(vxvv[ii,:],radec=True,uvw=True,vo=220.,ro=8.)

We then calculate the actions and angles for each object in a flat rotation curve potential

>>> lp= LogarithmicHaloPotential(normalize=1.)
>>> myjr[ii]= o.jr(lp)

etc.

Plotting the radial action versus the angular momentum

>>> plot.bovy_plot(myjp,myjr,'k.',ms=2.,xlabel=r'$J_{\phi}$',ylabel=r'$J_R$',xrange=[0.7,1.3],yrange=[0.,0.05])

shows a feature in the distribution

_images/actionAngle-jrjp.png

If instead we use a power-law rotation curve with power-law index 1

>>> pp= PowerSphericalPotential(normalize=1.,alpha=-2.)
>>> myjr[ii]= o.jr(pp)

We find that the distribution is stretched, but the feature remains

_images/actionAngle-jrjp-power.png

Code for this example can be found here (note that this code uses a particular download of the GCS data set; if you use your own version, you will need to modify the part of the code that reads the data). For more information see 2010MNRAS.409..145S.

Three-dimensional disk distribution functions

galpy contains a fully three-dimensional disk distribution: galpy.df.quasiisothermaldf, which is an approximately isothermal distribution function expressed in terms of action–angle variables (see 2010MNRAS.401.2318B and 2011MNRAS.413.1889B). Recent research shows that this distribution function provides a good model for the DF of mono-abundance sub-populations (MAPs) of the Milky Way disk (see 2013MNRAS.434..652T and 2013ApJ...779..115B). This distribution function family requires action-angle coordinates to evaluate the DF, so galpy.df.quasiisothermaldf makes heavy use of the routines in galpy.actionAngle (in particular those in galpy.actionAngleAdiabatic and galpy.actionAngle.actionAngleStaeckel).

Setting up the DF and basic properties

The quasi-isothermal DF is defined by a gravitational potential and a set of parameters describing the radial surface-density profile and the radial and vertical velocity dispersion as a function of radius. In addition, we have to provide an instance of a galpy.actionAngle class to calculate the actions for a given position and velocity. For example, for a galpy.potential.MWPotential2014 potential using the adiabatic approximation for the actions, we import and define the following

>>> from galpy.potential import MWPotential2014
>>> from galpy.actionAngle import actionAngleAdiabatic
>>> from galpy.df import quasiisothermaldf
>>> aA= actionAngleAdiabatic(pot=MWPotential2014,c=True)

and then setup the quasiisothermaldf instance

>>> qdf= quasiisothermaldf(1./3.,0.2,0.1,1.,1.,pot=MWPotential2014,aA=aA,cutcounter=True)

which sets up a DF instance with a radial scale length of \(R_0/3\), a local radial and vertical velocity dispersion of \(0.2\,V_c(R_0)\) and \(0.1\,V_c(R_0)\), respectively, and a radial scale lengths of the velocity dispersions of \(R_0\). cutcounter=True specifies that counter-rotating stars are explicitly excluded (normally these are just exponentially suppressed). As for the two-dimensional disk DFs, these parameters are merely input (or target) parameters; the true density and velocity dispersion profiles calculated by evaluating the relevant moments of the DF (see below) are not exactly exponential and have scale lengths and local normalizations that deviate slightly from these input parameters. We can estimate the DF’s actual radial scale length near \(R_0\) as

>>> qdf.estimate_hr(1.)
0.32908034635647182

which is quite close to the input value of 1/3. Similarly, we can estimate the scale lengths of the dispersions

>>> qdf.estimate_hsr(1.)
1.1913935820372923
>>> qdf.estimate_hsz(1.)
1.0506918075359255

The vertical profile is fully specified by the velocity dispersions and radial density / dispersion profiles under the assumption of dynamical equilibrium. We can estimate the scale height of this DF at a given radius and height as follows

>>> qdf.estimate_hz(1.,0.125)
0.021389597757156088

Near the mid-plane this vertical scale height becomes very large because the vertical profile flattens, e.g.,

>>> qdf.estimate_hz(1.,0.125/100.)
1.006386030587223

or even

>>> qdf.estimate_hz(1.,0.)
187649.98447377066

which is basically infinity.

Evaluating moments

We can evaluate various moments of the DF giving the density, mean velocities, and velocity dispersions. For example, the mean radial velocity is again everywhere zero because the potential and the DF are axisymmetric

>>> qdf.meanvR(1.,0.)
0.0

Likewise, the mean vertical velocity is everywhere zero

>>> qdf.meanvz(1.,0.)
0.0

The mean rotational velocity has a more interesting dependence on position. Near the plane, this is the same as that calculated for a similar two-dimensional disk DF (see Evaluating moments of the DF)

>>> qdf.meanvT(1.,0.)
0.91988346380781227

However, this value decreases as one moves further from the plane. The quasiisothermaldf allows us to calculate the average rotational velocity as a function of height above the plane. For example,

>>> zs= numpy.linspace(0.,0.25,21)
>>> mvts= numpy.array([qdf.meanvT(1.,z) for z in zs])

which gives

>>> plot(zs,mvts)
_images/qdf-meanvtz.png

We can also calculate the second moments of the DF. We can check whether the radial and velocity dispersions at \(R_0\) are close to their input values

>>> numpy.sqrt(qdf.sigmaR2(1.,0.))
0.20807112565801389
>>> numpy.sqrt(qdf.sigmaz2(1.,0.))
0.090453510526130904

and they are pretty close. We can also calculate the mixed R and z moment, for example,

>>> qdf.sigmaRz(1.,0.125)
0.0

or expressed as an angle (the tilt of the velocity ellipsoid)

>>> qdf.tilt(1.,0.125)
0.0

This tilt is zero because we are using the adiabatic approximation. As this approximation assumes that the motions in the plane are decoupled from the vertical motions of stars, the mixed moment is zero. However, this approximation is invalid for stars that go far above the plane. By using the Staeckel approximation to calculate the actions, we can model this coupling better. Setting up a quasiisothermaldf instance with the Staeckel approximation

>>> from galpy.actionAngle import actionAngleStaeckel
>>> aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.45,c=True)
>>> qdfS= quasiisothermaldf(1./3.,0.2,0.1,1.,1.,pot=MWPotential2014,aA=aAS,cutcounter=True)

we can similarly calculate the tilt

>>> qdfS.tilt(1.,0.125)
5.9096430410862419

or about 5 degrees. As a function of height, we find

>>> tilts= numpy.array([qdfS.tilt(1.,z) for z in zs])
>>> plot(zs,tilts)

which gives

_images/qdf_tiltz.png

We can also calculate the density and surface density (the zero-th velocity moments). For example, the vertical density

>>> densz= numpy.array([qdf.density(1.,z) for z in zs])

and

>>> denszS= numpy.array([qdfS.density(1.,z) for z in zs])

We can compare the vertical profiles calculated using the adiabatic and Staeckel action-angle approximations

>>> semilogy(zs,densz/densz[0])
>>> semilogy(zs,denszS/denszS[0])

which gives

_images/qdf-densz.png

Similarly, we can calculate the radial profile of the surface density

>>> rs= numpy.linspace(0.5,1.5,21)
>>> surfr= numpy.array([qdf.surfacemass_z(r) for r in rs])
>>> surfrS= numpy.array([qdfS.surfacemass_z(r) for r in rs])

and compare them with each other and an exponential with scale length 1/3

>>> semilogy(rs,surfr/surfr[10])
>>> semilogy(rs,surfrS/surfrS[10])
>>> semilogy(rs,numpy.exp(-(rs-1.)/(1./3.)))

which gives

_images/qdf-densr.png

The two radial profiles are almost indistinguishable and are very close, if somewhat shallower, than the pure exponential profile.

General velocity moments, including all higher order moments, are implemented in quasiisothermaldf.vmomentdensity.

Evaluating and sampling the full probability distribution function

We can evaluate the distribution itself by calling the object, e.g.,

>>> qdf(1.,0.1,1.1,0.1,0.) #input: R,vR,vT,z,vz
array([ 16.86790643])

or as a function of rotational velocity, for example in the mid-plane

>>> vts= numpy.linspace(0.,1.5,101)
>>> pvt= numpy.array([qdfS(1.,0.,vt,0.,0.) for vt in vts])
>>> plot(vts,pvt/numpy.sum(pvt)/(vts[1]-vts[0]))

which gives

_images/qdf-callvt.png

This is, however, not the true distribution of rotational velocities at R =0 and z =0, because it is conditioned on zero radial and vertical velocities. We can calculate the distribution of rotational velocities marginalized over the radial and vertical velocities as

>>> qdfS.pvT(1.,1.,0.) #input vT,R,z
14.677231196899195

or as a function of rotational velocity

>>> pvt= numpy.array([qdfS.pvT(vt,1.,0.) for vt in vts])

overplotting this over the previous distribution gives

>>> plot(vts,pvt/numpy.sum(pvt)/(vts[1]-vts[0]))
_images/qdf-pvt.png

which is slightly different from the conditioned distribution. Similarly, we can calculate marginalized velocity probabilities `pvR, pvz, pvRvT, pvRvz, and pvTvz. These are all multiplied with the density, such that marginalizing these over the remaining velocity component results in the density.

We can sample velocities at a given location using quasiisothermaldf.sampleV (there is currently no support for sampling locations from the density profile, although that is rather trivial):

>>> vs= qdfS.sampleV(1.,0.,n=10000)
>>> hist(vs[:,1],normed=True,histtype='step',bins=101,range=[0.,1.5])

gives

_images/qdf-pvtwsamples.png

which shows very good agreement with the green (marginalized over vR and vz) curve (as it should).

Tutorials

Dynamical modeling of tidal streams

galpy contains tools to model the dynamics of tidal streams, making extensive use of action-angle variables. As an example, we can model the dynamics of the following tidal stream (that of Bovy 2014; 2014ApJ...795...95B). This movie shows the disruption of a cluster on a GD-1-like orbit around the Milky Way:

The blue line is the orbit of the progenitor cluster and the black points are cluster members. The disruption is shown in an approximate orbital plane and the movie is comoving with the progenitor cluster.

Streams can be represented by simple dynamical models in action-angle coordinates. In action-angle coordinates, stream members are stripped from the progenitor cluster onto orbits specified by a set of actions \((J_R,J_\phi,J_Z)\), which remain constant after the stars have been stripped. This is shown in the following movie, which shows the generation of the stream in action space

The color-coding gives the angular momentum \(J_\phi\) and the black dot shows the progenitor orbit. These actions were calculated using galpy.actionAngle.actionAngleIsochroneApprox. The points move slightly because of small errors in the action calculation (these are correlated, so the cloud of points moves coherently because of calculation errors). The same movie that also shows the actions of stars in the cluster can be found here. This shows that the actions of stars in the cluster are not conserved (because the self-gravity of the cluster is important), but that the actions of stream members freeze once they are stripped. The angle difference between stars in a stream and the progenitor increases linearly with time, which is shown in the following movie:

where the radial and vertical angle difference with respect to the progenitor (co-moving at \((\theta_R,\theta_\phi,\theta_Z) = (\pi,\pi,\pi)\)) is shown for each snapshot (the color-coding gives \(\theta_\phi\)).

One last movie provides further insight in how a stream evolves over time. The following movie shows the evolution of the stream in the two dimensional plane of frequency and angle along the stream (that is, both are projections of the three dimensional frequencies or angles onto the angle direction along the stream). The points are color-coded by the time at which they were removed from the progenitor cluster.

It is clear that disruption happens in bursts (at pericenter passages) and that the initial frequency distribution at the time of removal does not change (much) with time. However, stars removed at larger frequency difference move away from the cluster faster, such that the end of the stream is primarily made up of stars with large frequency differences with respect to the progenitor. This leads to a gradient in the typical orbit in the stream, and the stream is on average not on a single orbit.

Modeling streams in galpy

In galpy we can model streams using the tools in galpy.df.streamdf. We setup a streamdf instance by specifying the host gravitational potential pot=, an actionAngle method (typically galpy.actionAngle.actionAngleIsochroneApprox), a galpy.orbit.Orbit instance with the position of the progenitor, a parameter related to the velocity dispersion of the progenitor, and the time since disruption began. We first import all of the necessary modules

>>> from galpy.df import streamdf
>>> from galpy.orbit import Orbit
>>> from galpy.potential import LogarithmicHaloPotential
>>> from galpy.actionAngle import actionAngleIsochroneApprox
>>> from galpy.util import bovy_conversion #for unit conversions

setup the potential and actionAngle instances

>>> lp= LogarithmicHaloPotential(normalize=1.,q=0.9)
>>> aAI= actionAngleIsochroneApprox(pot=lp,b=0.8)

define a progenitor Orbit instance

>>> obs= Orbit([1.56148083,0.35081535,-1.15481504,0.88719443,-0.47713334,0.12019596])

and instantiate the streamdf model

>>> sigv= 0.365 #km/s
>>> sdf= streamdf(sigv/220.,progenitor=obs,pot=lp,aA=aAI,leading=True,nTrackChunks=11,tdisrupt=4.5/bovy_conversion.time_in_Gyr(220.,8.))

for a leading stream. This runs in about half a minute on a 2011 Macbook Air.

Bovy (2014) discusses how the calculation of the track needs to be iterated for potentials where there is a large offset between the track and a single orbit. One can increase the default number of iterations by specifying nTrackIterations= in the streamdf initialization (the default is set based on the angle between the track’s frequency vector and the progenitor orbit’s frequency vector; you can access the number of iterations used as sdf.nTrackIterations). To check whether the track is calculated accurately, one can use the following

>>> sdf.plotCompareTrackAAModel()

which in this case gives

_images/sdf_plotcomparetrackaamodel.png

This displays the stream model’s track in frequency offset (y axis) versus angle offset (x axis) as the solid line; this is the track that the model should have if it is calculated correctly. The points are the frequency and angle offset calculated from the calculated track’s \((\mathbf{x},\mathbf{v})\). For a properly computed track these should line up, as they do in this figure. If they do not line up, increasing nTrackIterations is necessary.

We can calculate some simple properties of the stream, such as the ratio of the largest and second-to-largest eigenvalue of the Hessian \(\partial \mathbf{\Omega} / \partial \mathbf{J}\)

>>> sdf.freqEigvalRatio(isotropic=True)
34.450028399901434

or the model’s ratio of the largest and second-to-largest eigenvalue of the model frequency variance matrix

>>> sdf.freqEigvalRatio()
29.625538344985291

The fact that this ratio is so large means that an approximately one dimensional stream will form.

Similarly, we can calculate the angle between the frequency vector of the progenitor and of the model mean frequency vector

>>> sdf.misalignment()
-0.49526013844831596

which returns this angle in degrees. We can also calculate the angle between the frequency vector of the progenitor and the principal eigenvector of \(\partial \mathbf{\Omega} / \partial \mathbf{J}\)

>>> sdf.misalignment(isotropic=True)
 1.2825116841963993

(the reason these are obtained by specifying isotropic=True is that these would be the ratio of the eigenvalues or the angle if we assumed that the disrupted materials action distribution were isotropic).

Calculating the average stream location (track)

We can display the stream track in various coordinate systems as follows

>>> sdf.plotTrack(d1='r',d2='z',interp=True,color='k',spread=2,overplot=False,lw=2.,scaleToPhysical=True)

which gives

_images/sdf_track_rz.png

which shows the track in Galactocentric R and Z coordinates as well as an estimate of the spread around the track as the dash-dotted line. We can overplot the points along the track along which the \((\mathbf{x},\mathbf{v}) \rightarrow (\mathbf{\Omega},\boldsymbol{\theta})\) transformation and the track position is explicitly calculated, by turning off the interpolation

>>> sdf.plotTrack(d1='r',d2='z',interp=False,color='k',spread=0,overplot=True,ls='none',marker='o',scaleToPhysical=True)

which gives

_images/sdf_track_rz_points.png

We can also overplot the orbit of the progenitor

>>> sdf.plotProgenitor(d1='r',d2='z',color='r',overplot=True,ls='--',scaleToPhysical=True)

to give

_images/sdf_track_rz_progenitor.png

We can do the same in other coordinate systems, for example X and Z (as in Figure 1 of Bovy 2014)

>>> sdf.plotTrack(d1='x',d2='z',interp=True,color='k',spread=2,overplot=False,lw=2.,scaleToPhysical=True)
>>> sdf.plotTrack(d1='x',d2='z',interp=False,color='k',spread=0,overplot=True,ls='none',marker='o',scaleToPhysical=True)
>>> sdf.plotProgenitor(d1='x',d2='z',color='r',overplot=True,ls='--',scaleToPhysical=True)
>>> xlim(12.,14.5); ylim(-3.5,7.6)

which gives

_images/sdf_track_xz.png

or we can calculate the track in observable coordinates, e.g.,

>>> sdf.plotTrack(d1='ll',d2='dist',interp=True,color='k',spread=2,overplot=False,lw=2.)
>>> sdf.plotTrack(d1='ll',d2='dist',interp=False,color='k',spread=0,overplot=True,ls='none',marker='o')
>>> sdf.plotProgenitor(d1='ll',d2='dist',color='r',overplot=True,ls='--')
>>> xlim(155.,255.); ylim(7.5,14.8)

which displays

_images/sdf_track_ldist.png

Coordinate transformations to physical coordinates are done using parameters set when initializing the sdf instance. See the help for ?streamdf for a complete list of initialization parameters.

Mock stream data generation

We can also easily generate mock data from the stream model. This uses streamdf.sample. For example,

>>> RvR= sdf.sample(n=1000)

which returns the sampled points as a set \((R,v_R,v_T,Z,v_Z,\phi)\) in natural galpy coordinates. We can plot these and compare them to the track location

>>> sdf.plotTrack(d1='r',d2='z',interp=True,color='b',spread=2,overplot=False,lw=2.,scaleToPhysical=True)
>>> plot(RvR[0]*8.,RvR[3]*8.,'k.',ms=2.) #multiply by the physical distance scale
>>> xlim(12.,16.5); ylim(2.,7.6)

which gives

_images/sdf_mock_rz.png

Similarly, we can generate mock data in observable coordinates

>>> lb= sdf.sample(n=1000,lb=True)

and plot it

>>> sdf.plotTrack(d1='ll',d2='dist',interp=True,color='b',spread=2,overplot=False,lw=2.)
>>> plot(lb[0],lb[2],'k.',ms=2.)
>>> xlim(155.,235.); ylim(7.5,10.8)

which displays

_images/sdf_mock_lb.png

We can also just generate mock stream data in frequency-angle coordinates

>>> mockaA= sdf.sample(n=1000,returnaAdt=True)

which returns a tuple with three components: an array with shape [3,N] of frequency vectors \((\Omega_R,\Omega_\phi,\Omega_Z)\), an array with shape [3,N] of angle vectors \((\theta_R,\theta_\phi,\theta_Z)\) and \(t_s\), the stripping time. We can plot the vertical versus the radial frequency

>>> plot(mockaA[0][0],mockaA[0][2],'k.',ms=2.)
_images/sdf_mock_aa_oroz.png

or we can plot the magnitude of the angle offset as a function of stripping time

>>> plot(mockaA[2],numpy.sqrt(numpy.sum((mockaA[1]-numpy.tile(sdf._progenitor_angle,(1000,1)).T)**2.,axis=0)),'k.',ms=2.)
_images/sdf_mock_aa_adt.png

Evaluating and marginalizing the full PDF

We can also evaluate the stream PDF, the probability of a \((\mathbf{x},\mathbf{v})\) phase-space position in the stream. We can evaluate the PDF, for example, at the location of the progenitor

>>> sdf(obs.R(),obs.vR(),obs.vT(),obs.z(),obs.vz(),obs.phi())
array([-33.16985861])

which returns the natural log of the PDF. If we go to slightly higher in Z and slightly smaller in R, the PDF becomes zero

>>> sdf(obs.R()-0.1,obs.vR(),obs.vT(),obs.z()+0.1,obs.vz(),obs.phi())
array([-inf])

because this phase-space position cannot be reached by a leading stream star. We can also marginalize the PDF over unobserved directions. For example, similar to Figure 10 in Bovy (2014), we can evaluate the PDF \(p(X|Z)\) near a point on the track, say near Z =2 kpc (=0.25 in natural units. We first find the approximate Gaussian PDF near this point, calculated from the stream track and dispersion (see above)

>>> meanp, varp= sdf.gaussApprox([None,None,2./8.,None,None,None])

where the input is a array with entries [X,Y,Z,vX,vY,vZ] and we substitute None for directions that we want to establish the approximate PDF for. So the above expression returns an approximation to \(p(X,Y,v_X,v_Y,v_Z|Z)\). This approximation allows us to get a sense of where the PDF peaks and what its width is

>>> meanp[0]*8.
14.267559400127833
>>> numpy.sqrt(varp[0,0])*8.
0.04152968631186698

We can now evaluate the PDF \(p(X|Z)\) as a function of X near the peak

>>> xs= numpy.linspace(-3.*numpy.sqrt(varp[0,0]),3.*numpy.sqrt(varp[0,0]),21)+meanp[0]
>>> logps= numpy.array([sdf.callMarg([x,None,2./8.,None,None,None]) for x in xs])
>>> ps= numpy.exp(logps)

and we normalize the PDF

>>> ps/= numpy.sum(ps)*(xs[1]-xs[0])*8.

and plot it together with the Gaussian approximation

>>> plot(xs*8.,ps)
>>> plot(xs*8.,1./numpy.sqrt(2.*numpy.pi)/numpy.sqrt(varp[0,0])/8.*numpy.exp(-0.5*(xs-meanp[0])**2./varp[0,0]))

which gives

_images/sdf_pxz.png

Sometimes it is hard to automatically determine the closest point on the calculated track if only one phase-space coordinate is given. For example, this happens when evaluating \(p(Z|X)\) for X > 13 kpc here, where there are two branches of the track in Z (see the figure of the track above). In that case, we can determine the closest track point on one of the branches by hand and then provide this closest point as the basis of PDF calculations. The following example shows how this is done for the upper Z branch at X = 13.5 kpc, which is near Z =5 kpc (Figure 10 in Bovy 2014).

>>> cindx= sdf.find_closest_trackpoint(13.5/8.,None,5.32/8.,None,None,None,xy=True)

gives the index of the closest point on the calculated track. This index can then be given as an argument for the PDF functions:

>>> meanp, varp= meanp, varp= sdf.gaussApprox([13.5/8.,None,None,None,None,None],cindx=cindx)

computes the approximate \(p(Y,Z,v_X,v_Y,v_Z|X)\) near the upper Z branch. In Z, this PDF has mean and dispersion

>>> meanp[1]*8.
5.4005530328542077
>>> numpy.sqrt(varp[1,1])*8.
0.05796023309510244

We can then evaluate \(p(Z|X)\) for the upper branch as

>>> zs= numpy.linspace(-3.*numpy.sqrt(varp[1,1]),3.*numpy.sqrt(varp[1,1]),21)+meanp[1]
>>> logps= numpy.array([sdf.callMarg([13.5/8.,None,z,None,None,None],cindx=cindx) for z in zs])
>>> ps= numpy.exp(logps)
>>> ps/= numpy.sum(ps)*(zs[1]-zs[0])*8.

and we can again plot this and the approximation

>>> plot(zs*8.,ps)
>>> plot(zs*8.,1./numpy.sqrt(2.*numpy.pi)/numpy.sqrt(varp[1,1])/8.*numpy.exp(-0.5*(zs-meanp[1])**2./varp[1,1]))

which gives

_images/sdf-pzx.png

The approximate PDF in this case is very close to the correct PDF. When supplying the closest track point, care needs to be taken that this really is the closest track point. Otherwise the approximate PDF will not be quite correct.

Library reference

Orbit

See Orbit initialization for a detailed explanation on how to set up Orbit instances.

Class

galpy.orbit.Orbit
class galpy.orbit.Orbit(vxvv=None, uvw=False, lb=False, radec=False, vo=None, ro=None, zo=0.025, solarmotion='hogg')

General orbit class representing an orbit

__init__(vxvv=None, uvw=False, lb=False, radec=False, vo=None, ro=None, zo=0.025, solarmotion='hogg')

NAME:

__init__

PURPOSE:

Initialize an Orbit instance

INPUT:

vxvv - initial conditions
3D can be either
  1. in Galactocentric cylindrical coordinates [R,vR,vT(,z,vz,phi)]
  2. [ra,dec,d,mu_ra, mu_dec,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (all J2000.0; mu_ra = mu_ra * cos dec)
  3. [ra,dec,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]
  4. (l,b,d,mu_l, mu_b, vlos) in [deg,deg,kpc,mas/yr,mas/yr,km/s) (all J2000.0; mu_l = mu_l * cos b)
  5. [l,b,d,U,V,W] in [deg,deg,kpc,km/s,km/s,kms]
  1. and 5) also work when leaving out b and mu_b/W

OPTIONAL INPUTS:

radec - if True, input is 2) (or 3) above

uvw - if True, velocities are UVW

lb - if True, input is 4) or 5) above

vo - circular velocity at ro (km/s)

ro - distance from vantage point to GC (kpc)

zo - offset toward the NGP of the Sun wrt the plane (kpc)

solarmotion - ‘hogg’ or ‘dehnen’, or ‘schoenrich’, or value in [-U,V,W]

If ro and/or vo are specified, outputs involving distances or velocities (whether as instance methods or in plots) will by default be displayed in the physical coordinates implied by these scales. This can be overwritten for each individual method by using use_physical=False as a keyword for the method.

OUTPUT:

instance

HISTORY:

2010-07-20 - Written - Bovy (NYU)

Methods

galpy.orbit.Orbit.__add__
Orbit.__add__(linOrb)

NAME:

__add__

PURPOSE:

add a linear orbit and a planar orbit to make a 3D orbit

INPUT:

linear or plane orbit instance

OUTPUT:

3D orbit

HISTORY:

2010-07-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.__call__
Orbit.__call__(*args, **kwargs)

NAME:

__call__

PURPOSE:

return the orbit at time t

INPUT:

t - desired time

rect - if true, return rectangular coordinates

OUTPUT:

an Orbit instance with initial condition set to the phase-space at time t or list of Orbit instances if multiple times are given

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.bb
Orbit.bb(*args, **kwargs)

NAME:

bb

PURPOSE:

return Galactic latitude

INPUT:

t - (optional) time at which to get bb

obs=[X,Y,Z] - (optional) position of observer (in kpc) (default=[8.0,0.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

b(t)

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.orbit.Orbit.dec
Orbit.dec(*args, **kwargs)

NAME:

dec

PURPOSE:

return the declination

INPUT:

t - (optional) time at which to get dec

obs=[X,Y,Z] - (optional) position of observer (in kpc) (default=[8.0,0.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

dec(t)

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.orbit.Orbit.dist
Orbit.dist(*args, **kwargs)

NAME:

dist

PURPOSE:

return distance from the observer

INPUT:

t - (optional) time at which to get dist

obs=[X,Y,Z] - (optional) position of observer (in kpc) (default=[8.0,0.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

dist(t) in kpc

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.orbit.Orbit.E
Orbit.E(*args, **kwargs)

NAME:

E

PURPOSE:

calculate the energy

INPUT:

t - (optional) time at which to get the energy

pot= Potential instance or list of such instances

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

energy

HISTORY:

2010-09-15 - Written - Bovy (NYU)
galpy.orbit.Orbit.e
Orbit.e(analytic=False, pot=None)

NAME:

e

PURPOSE:

calculate the eccentricity

INPUT:

analytic - compute this analytically

pot - potential to use for analytical calculation

OUTPUT:

eccentricity

HISTORY:

2010-09-15 - Written - Bovy (NYU)
galpy.orbit.Orbit.ER
Orbit.ER(*args, **kwargs)

NAME:

ER

PURPOSE:

calculate the radial energy

INPUT:

t - (optional) time at which to get the radial energy

pot= Potential instance or list of such instances

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

radial energy

HISTORY:

2013-11-30 - Written - Bovy (IAS)
galpy.orbit.Orbit.Ez
Orbit.Ez(*args, **kwargs)

NAME:

Ez

PURPOSE:

calculate the vertical energy

INPUT:

t - (optional) time at which to get the vertical energy

pot= Potential instance or list of such instances

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

vertical energy

HISTORY:

2013-11-30 - Written - Bovy (IAS)
galpy.orbit.Orbit.fit
Orbit.fit(vxvv, vxvv_err=None, pot=None, radec=False, lb=False, tintJ=10, ntintJ=1000, integrate_method='dopr54_c', **kwargs)

NAME:

fit

PURPOSE:

fit an Orbit to data using the current orbit as the initial condition

INPUT:

vxvv - [:,6] array of positions and velocities along the orbit

vxvv_err= [:,6] array of errors on positions and velocities along the orbit (if None, these are set to 0.01)

pot= Potential to fit the orbit in

Keywords related to the input data:

radec= if True, input vxvv and vxvv are [ra,dec,d,mu_ra, mu_dec,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (all J2000.0; mu_ra = mu_ra * cos dec); the attributes of the current Orbit are used to convert between these coordinates and Galactocentric coordinates

lb= if True, input vxvv and vxvv are [long,lat,d,mu_ll, mu_bb,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (mu_ll = mu_ll * cos lat); the attributes of the current Orbit are used to convert between these coordinates and Galactocentric coordinates

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=Object-wide default) Cannot be an Orbit instance with the orbit of the reference point, as w/ the ra etc. functions

ro= distance in kpc corresponding to R=1. (default: taken from object)

vo= velocity in km/s corresponding to v=1. (default: taken from object)

Keywords related to the orbit integrations:

tintJ= (default: 10) time to integrate orbits for fitting the orbit

ntintJ= (default: 1000) number of time-integration points

integrate_method= (default: ‘dopr54_c’) integration method to use

OUTPUT:

max of log likelihood

HISTORY:

2014-06-17 - Written - Bovy (IAS)
galpy.orbit.Orbit.flip
Orbit.flip()

NAME:

flip

PURPOSE:

‘flip’ an orbit’s initial conditions such that the velocities are minus the original velocities; useful for quick backward integration; returns a new Orbit instance

INPUT:

(none)

OUTPUT:

Orbit instance that has the velocities of the current orbit flipped

HISTORY:

2014-06-17 - Written - Bovy (IAS)
galpy.orbit.Orbit.integrate
Orbit.integrate(t, pot, method='symplec4_c')

NAME:

integrate

PURPOSE:

integrate the orbit

INPUT:

t - list of times at which to output (0 has to be in this!)

pot - potential instance or list of instances

method= ‘odeint’ for scipy’s odeint
‘leapfrog’ for a simple leapfrog implementation ‘leapfrog_c’ for a simple leapfrog implementation in C ‘symplec4_c’ for a 4th order symplectic integrator in C ‘symplec6_c’ for a 6th order symplectic integrator in C ‘rk4_c’ for a 4th-order Runge-Kutta integrator in C ‘rk6_c’ for a 6-th order Runge-Kutta integrator in C ‘dopr54_c’ for a Dormand-Prince integrator in C (generally the fastest)

OUTPUT:

(none) (get the actual orbit using getOrbit()

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.integrate_dxdv

Currently only supported for planarOrbit instances.

Orbit.integrate_dxdv(dxdv, t, pot, method='dopr54_c', rectIn=False, rectOut=False)

NAME:

integrate_dxdv

PURPOSE:

integrate the orbit and a small area of phase space

INPUT:

dxdv - [dR,dvR,dvT,dphi]

t - list of times at which to output (0 has to be in this!)

pot - potential instance or list of instances

method= ‘odeint’ for scipy’s odeint

‘rk4_c’ for a 4th-order Runge-Kutta integrator in C

‘rk6_c’ for a 6-th order Runge-Kutta integrator in C

‘dopr54_c’ for a Dormand-Prince integrator in C (generally the fastest)

‘dopr54_c’ is recommended, odeint is not recommended

rectIn= (False) if True, input dxdv is in rectangular coordinates

rectOut= (False) if True, output dxdv (that in orbit_dxdv) is in rectangular coordinates

OUTPUT:

(none) (get the actual orbit using getOrbit_dxdv(), the orbit that is integrated alongside with dxdv is stored as usual, any previous regular orbit integration will be erased!)

HISTORY:

2010-10-17 - Written - Bovy (IAS)

2014-06-29 - Added rectIn and rectOut - Bovy (IAS)

galpy.orbit.Orbit.getOrbit
Orbit.getOrbit()

NAME:

getOrbit

PURPOSE:

return a previously calculated orbit

INPUT:

(none)

OUTPUT:

array orbit[nt,nd]

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.getOrbit_dxdv

integrate_dxdv is currently only supported for planarOrbit instances. getOrbit_dxdv is therefore also only supported for those types of Orbit.

Orbit.getOrbit_dxdv()

NAME:

getOrbit_dxdv

PURPOSE:

return a previously calculated integration of a small phase-space volume (with integrate_dxdv)

INPUT:

(none)

OUTPUT:

array orbit[nt,nd*2] with for each t the dxdv vector

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.helioX
Orbit.helioX(*args, **kwargs)

NAME:

helioX

PURPOSE:

return Heliocentric Galactic rectangular x-coordinate (aka “X”)

INPUT:

t - (optional) time at which to get X

obs=[X,Y,Z] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

helioX(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.helioY
Orbit.helioY(*args, **kwargs)

NAME:

helioY

PURPOSE:

return Heliocentric Galactic rectangular y-coordinate (aka “Y”)

INPUT:

t - (optional) time at which to get Y

obs=[X,Y,Z] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

helioY(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.helioZ
Orbit.helioZ(*args, **kwargs)

NAME:

helioZ

PURPOSE:

return Heliocentric Galactic rectangular z-coordinate (aka “Z”)

INPUT:

t - (optional) time at which to get Z

obs=[X,Y,Z] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

helioZ(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.Jacobi
Orbit.Jacobi(*args, **kwargs)

NAME:

Jacobi

PURPOSE:

calculate the Jacobi integral E - Omega L

INPUT:

t - (optional) time at which to get the Jacobi integral

OmegaP= pattern speed

pot= potential instance or list of such instances

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Jacobi integral

HISTORY:

2011-04-18 - Written - Bovy (NYU)
galpy.orbit.Orbit.jp
Orbit.jp(*args, **kwargs)

NAME:

jp

PURPOSE:

calculate the azimuthal action

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

jp

HISTORY:

2010-11-30 - Written - Bovy (NYU)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.jr
Orbit.jr(*args, **kwargs)

NAME:

jr

PURPOSE:

calculate the radial action

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

jr

HISTORY:

2010-11-30 - Written - Bovy (NYU)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.jz
Orbit.jz(*args, **kwargs)

NAME:

jz

PURPOSE:

calculate the vertical action

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

jz

HISTORY:

2012-06-01 - Written - Bovy (IAS)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.ll
Orbit.ll(*args, **kwargs)

NAME:

ll

PURPOSE:

return Galactic longitude

INPUT:

t - (optional) time at which to get ll

obs=[X,Y,Z] - (optional) position of observer (in kpc) (default=[8.0,0.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

l(t)

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.orbit.Orbit.L
Orbit.L(*args, **kwargs)

NAME:

L

PURPOSE:

calculate the angular momentum at time t

INPUT:

t - (optional) time at which to get the angular momentum

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

angular momentum

HISTORY:

2010-09-15 - Written - Bovy (NYU)
galpy.orbit.Orbit.Op
Orbit.Op(*args, **kwargs)

NAME:

Op

PURPOSE:

calculate the azimuthal frequency

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Op

HISTORY:

2013-11-27 - Written - Bovy (IAS)
galpy.orbit.Orbit.Or
Orbit.Or(*args, **kwargs)

NAME:

Or

PURPOSE:

calculate the radial frequency

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Or

HISTORY:

2013-11-27 - Written - Bovy (IAS)
galpy.orbit.Orbit.Oz
Orbit.Oz(*args, **kwargs)

NAME:

Oz

PURPOSE:

calculate the vertical frequency

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Oz

HISTORY:

2013-11-27 - Written - Bovy (IAS)
galpy.orbit.Orbit.phi
Orbit.phi(*args, **kwargs)

NAME:

phi

PURPOSE:

return azimuth

INPUT:

t - (optional) time at which to get the azimuth

OUTPUT:

phi(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.plot
Orbit.plot(*args, **kwargs)

NAME:

plot

PURPOSE:

plot a previously calculated orbit (with reasonable defaults)

INPUT:

d1= first dimension to plot (‘x’, ‘y’, ‘R’, ‘vR’, ‘vT’, ‘z’, ‘vz’, ...)

d2= second dimension to plot

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

matplotlib.plot inputs+bovy_plot.plot inputs

OUTPUT:

sends plot to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plot3d
Orbit.plot3d(*args, **kwargs)

NAME:

plot3d

PURPOSE:

plot 3D aspects of an Orbit

INPUT:

d1= first dimension to plot (‘x’, ‘y’, ‘R’, ‘vR’, ‘vT’, ‘z’, ‘vz’, ...)

d2= second dimension to plot

d3= third dimension to plot

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

bovy_plot3d args and kwargs

OUTPUT:

plot

HISTORY:

2010-07-26 - Written - Bovy (NYU)

2010-09-22 - Adapted to more general framework - Bovy (NYU)

2010-01-08 - Adapted to 3D - Bovy (NYU)

galpy.orbit.Orbit.plotE
Orbit.plotE(*args, **kwargs)

NAME:

plotE

PURPOSE:

plot E(.) along the orbit

INPUT:

pot= Potential instance or list of instances in which the orbit was integrated

d1= plot Ez vs d1: e.g., ‘t’, ‘z’, ‘R’, ‘vR’, ‘vT’, ‘vz’

normed= if set, plot E(t)/E(0) rather than E(t)

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

+bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)

2014-06-16 - Changed to actually plot E rather than E/E0 - Bovy (IAS)

galpy.orbit.Orbit.plotER
Orbit.plotER(*args, **kwargs)

NAME:

plotER

PURPOSE:

plot E_R(.) along the orbit

INPUT:

pot= Potential instance or list of instances in which the orbit was integrated

d1= plot ER vs d1: e.g., ‘t’, ‘z’, ‘R’

normed= if set, plot E(t)/E(0) rather than E(t)

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

+bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotEz
Orbit.plotEz(*args, **kwargs)

NAME:

plotEz

PURPOSE:

plot E_z(.) along the orbit

INPUT:

pot= Potential instance or list of instances in which the orbit was integrated

d1= plot Ez vs d1: e.g., ‘t’, ‘z’, ‘R’

normed= if set, plot E(t)/E(0) rather than E(t)

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

+bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotEzJz
Orbit.plotEzJz(*args, **kwargs)

NAME:

plotEzJzt

PURPOSE:

plot E_z(t)/sqrt(dens(R)) / (E_z(0)/sqrt(dens(R(0)))) along the orbit (an approximation to the vertical action)

INPUT:

pot - Potential instance or list of instances in which the orbit was integrated

d1= plot Ez vs d1: e.g., ‘t’, ‘z’, ‘R’

+bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-08-08 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotphi
Orbit.plotphi(*args, **kwargs)

NAME:

plotphi

PURPOSE:

plot phi(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotR
Orbit.plotR(*args, **kwargs)

NAME:

plotR

PURPOSE:

plot R(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotvR
Orbit.plotvR(*args, **kwargs)

NAME:

plotvR

PURPOSE:

plot vR(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotvT
Orbit.plotvT(*args, **kwargs)

NAME:

plotvT

PURPOSE:

plot vT(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotvx
Orbit.plotvx(*args, **kwargs)

NAME:

plotvx

PURPOSE:

plot vx(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotvy
Orbit.plotvy(*args, **kwargs)

NAME:

plotvy

PURPOSE:

plot vy(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotvz
Orbit.plotvz(*args, **kwargs)

NAME:

plotvz

PURPOSE:

plot vz(.) along the orbit
INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotx
Orbit.plotx(*args, **kwargs)

NAME:

plotx

PURPOSE:

plot x(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.ploty
Orbit.ploty(*args, **kwargs)

NAME:

ploty

PURPOSE:

plot y(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.plotz
Orbit.plotz(*args, **kwargs)

NAME:

plotz

PURPOSE:

plot z(.) along the orbit

INPUT:

d1= plot vs d1: e.g., ‘t’, ‘z’, ‘R’

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

bovy_plot.bovy_plot inputs

OUTPUT:

figure to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.orbit.Orbit.pmbb
Orbit.pmbb(*args, **kwargs)

NAME:

pmbb

PURPOSE:

return proper motion in Galactic latitude (in mas/yr)

INPUT:

t - (optional) time at which to get pmbb

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

pm_b(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.pmdec
Orbit.pmdec(*args, **kwargs)

NAME:

pmdec

PURPOSE:

return proper motion in declination (in mas/yr)

INPUT:

t - (optional) time at which to get pmdec

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

pm_dec(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.pmll
Orbit.pmll(*args, **kwargs)

NAME:

pmll

PURPOSE:

return proper motion in Galactic longitude (in mas/yr)

INPUT:

t - (optional) time at which to get pmll
v obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

pm_l(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.pmra
Orbit.pmra(*args, **kwargs)

NAME:

pmra

PURPOSE:

return proper motion in right ascension (in mas/yr)

INPUT:

t - (optional) time at which to get pmra

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

pm_ra(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.R
Orbit.R(*args, **kwargs)

NAME:

R

PURPOSE:

return cylindrical radius at time t

INPUT:

t - (optional) time at which to get the radius

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

R(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.ra
Orbit.ra(*args, **kwargs)

NAME:

ra

PURPOSE:

return the right ascension

INPUT:

t - (optional) time at which to get ra

obs=[X,Y,Z] - (optional) position of observer (in kpc) (default=[8.0,0.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

OUTPUT:

ra(t)

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.orbit.Orbit.rap
Orbit.rap(analytic=False, pot=None, **kwargs)

NAME:

rap

PURPOSE:

calculate the apocenter radius

INPUT:

analytic - compute this analytically

pot - potential to use for analytical calculation

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

R_ap

HISTORY:

2010-09-20 - Written - Bovy (NYU)
galpy.orbit.Orbit.resetaA
Orbit.resetaA(pot=None, type=None)

NAME:

resetaA

PURPOSE:

re-set up an actionAngle module for this Orbit

INPUT:

(none)

OUTPUT:

True if reset happened, False otherwise

HISTORY:

2014-01-06 - Written - Bovy (IAS)
galpy.orbit.Orbit.rperi
Orbit.rperi(analytic=False, pot=None, **kwargs)

NAME:

rperi

PURPOSE:

calculate the pericenter radius

INPUT:

analytic - compute this analytically

pot - potential to use for analytical calculation

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

R_peri

HISTORY:

2010-09-20 - Written - Bovy (NYU)
galpy.orbit.Orbit.setphi
Orbit.setphi(phi)

NAME:

setphi

PURPOSE:

set initial azimuth

INPUT:

phi - desired azimuth

OUTPUT:

(none)

HISTORY:

2010-08-01 - Written - Bovy (NYU)

BUGS:

Should perform check that this orbit has phi
galpy.orbit.Orbit.toLinear
Orbit.toLinear()

NAME:

toLinear

PURPOSE:

convert a 3D orbit into a 1D orbit (z)

INPUT:

(none)

OUTPUT:

linear Orbit

HISTORY:

2010-11-30 - Written - Bovy (NYU)
galpy.orbit.Orbit.toPlanar
Orbit.toPlanar()

NAME:

toPlanar

PURPOSE:

convert a 3D orbit into a 2D orbit

INPUT:

(none)

OUTPUT:

planar Orbit

HISTORY:

2010-11-30 - Written - Bovy (NYU)
galpy.orbit.Orbit.Tp
Orbit.Tp(*args, **kwargs)

NAME:

Tp

PURPOSE:

calculate the azimuthal period

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Tp

HISTORY:

2010-11-30 - Written - Bovy (NYU)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.Tr
Orbit.Tr(*args, **kwargs)

NAME:

Tr

PURPOSE:

calculate the radial period

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Tr

HISTORY:

2010-11-30 - Written - Bovy (NYU)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.TrTp
Orbit.TrTp(pot=None, **kwargs)

NAME:

TrTp

PURPOSE:

the ‘ratio’ between the radial and azimuthal period Tr/Tphi*pi

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

OUTPUT:

Tr/Tp*pi

HISTORY:

2010-11-30 - Written - Bovy (NYU)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.turn_physical_off
Orbit.turn_physical_off()

NAME:

turn_physical_off

PURPOSE:

turn off automatic returning of outputs in physical units

INPUT:

(none)

OUTPUT:

(none)

HISTORY:

2014-06-17 - Written - Bovy (IAS)
galpy.orbit.Orbit.Tz
Orbit.Tz(*args, **kwargs)

NAME:

Tz

PURPOSE:

calculate the vertical period

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

ro= (Object-wide default) physical scale for distances to use to convert

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Tz

HISTORY:

2012-06-01 - Written - Bovy (IAS)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.U
Orbit.U(*args, **kwargs)

NAME:

U

PURPOSE:

return Heliocentric Galactic rectangular x-velocity (aka “U”)

INPUT:

t - (optional) time at which to get U

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

U(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.V
Orbit.V(*args, **kwargs)

NAME:

V

PURPOSE:

return Heliocentric Galactic rectangular y-velocity (aka “V”)

INPUT:

t - (optional) time at which to get U

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

V(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.vbb
Orbit.vbb(*args, **kwargs)

NAME:

vbb

PURPOSE:

return velocity in Galactic latitude (km/s)

INPUT:

t - (optional) time at which to get vbb

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

v_b(t) in km/s

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.vdec
Orbit.vdec(*args, **kwargs)

NAME:

vdec

PURPOSE:

return velocity in declination (km/s)

INPUT:

t - (optional) time at which to get vdec

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

v_dec(t) in km/s

HISTORY:

2011-03-27 - Written - Bovy (NYU)
galpy.orbit.Orbit.vll
Orbit.vll(*args, **kwargs)

NAME:

vll

PURPOSE:

return the velocity in Galactic longitude (km/s)

INPUT:

t - (optional) time at which to get vll

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

v_l(t) in km/s

HISTORY:

2011-03-27 - Written - Bovy (NYU)
galpy.orbit.Orbit.vlos
Orbit.vlos(*args, **kwargs)

NAME:

vlos

PURPOSE:

return the line-of-sight velocity (in km/s)

INPUT:

t - (optional) time at which to get vlos

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

vlos(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.vphi
Orbit.vphi(*args, **kwargs)

NAME:

vphi

PURPOSE:

return angular velocity

INPUT:

t - (optional) time at which to get the angular velocity

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

vphi(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.vR
Orbit.vR(*args, **kwargs)

NAME:

vR

PURPOSE:

return radial velocity at time t

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

INPUT:

t - (optional) time at which to get the radial velocity

OUTPUT:

vR(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.vra
Orbit.vra(*args, **kwargs)

NAME:

vra

PURPOSE:

return velocity in right ascension (km/s)

INPUT:

t - (optional) time at which to get vra

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

v_ra(t) in km/s

HISTORY:

2011-03-27 - Written - Bovy (NYU)
galpy.orbit.Orbit.vT
Orbit.vT(*args, **kwargs)

NAME:

vT

PURPOSE:

return tangential velocity at time t

INPUT:

t - (optional) time at which to get the tangential velocity

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

vT(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.vx
Orbit.vx(*args, **kwargs)

NAME:

vx

PURPOSE:

return x velocity at time t

INPUT:

t - (optional) time at which to get the velocity

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

vx(t)

HISTORY:

2010-11-30 - Written - Bovy (NYU)
galpy.orbit.Orbit.vy
Orbit.vy(*args, **kwargs)

NAME:

vy

PURPOSE:

return y velocity at time t

INPUT:

t - (optional) time at which to get the velocity

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

vy(t)

HISTORY:

2010-11-30 - Written - Bovy (NYU)
galpy.orbit.Orbit.vz
Orbit.vz(*args, **kwargs)

NAME:

vz

PURPOSE:

return vertical velocity

INPUT:

t - (optional) time at which to get the vertical velocity

OUTPUT:

vz(t)

vo= (Object-wide default) physical scale for velocities to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.W
Orbit.W(*args, **kwargs)

NAME:

W

PURPOSE:

return Heliocentric Galactic rectangular z-velocity (aka “W”)

INPUT:

t - (optional) time at which to get W

obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer
(in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]) OR Orbit object that corresponds to the orbit of the observer

ro= distance in kpc corresponding to R=1. (default: 8.0)

vo= velocity in km/s corresponding to v=1. (default: 220.)

OUTPUT:

W(t)

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.orbit.Orbit.wp
Orbit.wp(pot=None, **kwargs)

NAME:

wp

PURPOSE:

calculate the azimuthal angle

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

OUTPUT:

wp

HISTORY:

2010-11-30 - Written - Bovy (NYU)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.wr
Orbit.wr(pot=None, **kwargs)

NAME:

wr

PURPOSE:

calculate the radial angle

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

OUTPUT:

wr

HISTORY:

2010-11-30 - Written - Bovy (NYU)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.wz
Orbit.wz(pot=None, **kwargs)

NAME:

wz

PURPOSE:

calculate the vertical angle

INPUT:

pot - potential

type= (‘adiabatic’) type of actionAngle module to use

  1. ‘adiabatic’
  2. ‘staeckel’
  3. ‘isochroneApprox’
  4. ‘spherical’

+actionAngle module setup kwargs

OUTPUT:

wz

HISTORY:

2012-06-01 - Written - Bovy (IAS)

2013-11-27 - Re-written using new actionAngle modules - Bovy (IAS)

galpy.orbit.Orbit.x
Orbit.x(*args, **kwargs)

NAME:

x

PURPOSE:

return x

INPUT:

t - (optional) time at which to get x

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

x(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.y
Orbit.y(*args, **kwargs)

NAME:

y

PURPOSE:

return y

INPUT:

t - (optional) time at which to get y

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

y(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.z
Orbit.z(*args, **kwargs)

NAME:

z

PURPOSE:

return vertical height

INPUT:

t - (optional) time at which to get the vertical height

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

z(t)

HISTORY:

2010-09-21 - Written - Bovy (NYU)
galpy.orbit.Orbit.zmax
Orbit.zmax(analytic=False, pot=None, **kwargs)

NAME:

zmax

PURPOSE:

calculate the maximum vertical height

INPUT:

analytic - compute this analytically

pot - potential to use for analytical calculation

ro= (Object-wide default) physical scale for distances to use to convert

use_physical= use to override Object-wide default for using a physical scale for output

OUTPUT:

Z_max

HISTORY:

2010-09-20 - Written - Bovy (NYU)

Potential

3D potentials

General instance routines

Use as Potential-instance.method(...)

galpy.potential.Potential.__call__
Potential.__call__(R, z, phi=0.0, t=0.0, dR=0, dphi=0)
NAME:
__call__
PURPOSE:
evaluate the potential at (R,z,phi,t)
INPUT:

R - Cylindrical Galactocentric radius

z - vertical height

phi - azimuth (optional)

t - time (optional)

dR= dphi=, if set to non-zero integers, return the dR, dphi’t derivative instead

OUTPUT:
Phi(R,z,t)
HISTORY:
2010-04-16 - Written - Bovy (NYU)
galpy.potential.Potential.dens
Potential.dens(R, z, phi=0.0, t=0.0, forcepoisson=False)

NAME:

dens

PURPOSE:

evaluate the density rho(R,z,t)

INPUT:

R - Cylindrical Galactocentric radius

z - vertical height

phi - azimuth (optional)

t - time (optional)

KEYWORDS:

forcepoisson= if True, calculate the density through the Poisson equation, even if an explicit expression for the density exists

OUTPUT:

rho (R,z,phi,t)

HISTORY:

2010-08-08 - Written - Bovy (NYU)
galpy.potential.Potential.dvcircdR
Potential.dvcircdR(R)

NAME:

dvcircdR

PURPOSE:

calculate the derivative of the circular velocity at R wrt R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

derivative of the circular rotation velocity wrt R

HISTORY:

2013-01-08 - Written - Bovy (IAS)
galpy.potential.Potential.epifreq
Potential.epifreq(R)

NAME:

epifreq

PURPOSE:

calculate the epicycle frequency at R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

epicycle frequency

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.Potential.flattening
Potential.flattening(R, z)

NAME:

flattening

PURPOSE:

calculate the potential flattening, defined as sqrt(|z/R F_R/F_z|)

INPUT:

R - Galactocentric radius

z - height

OUTPUT:

flattening

HISTORY:

2012-09-13 - Written - Bovy (IAS)
galpy.potential.Potential.lindbladR
Potential.lindbladR(OmegaP, m=2, **kwargs)

NAME:

lindbladR

PURPOSE:

calculate the radius of a Lindblad resonance

INPUT:

OmegaP - pattern speed

m= order of the resonance (as in m(O-Op)=kappa (negative m for outer)
use m=’corotation’ for corotation +scipy.optimize.brentq xtol,rtol,maxiter kwargs

OUTPUT:

radius of Linblad resonance, None if there is no resonance

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.Potential.mass
Potential.mass(R, z=None, t=0.0, forceint=False)

NAME:

mass

PURPOSE:

evaluate the mass enclosed

INPUT:

R - Cylindrical Galactocentric radius

z= (None) vertical height

t - time (optional)

KEYWORDS:

forceint= if True, calculate the mass through integration of the density, even if an explicit expression for the mass exists

OUTPUT:

  1. for spherical potentials: M(<R) [or if z is None], when the mass is implemented explicitly, the mass enclosed within r = sqrt(R^2+z^2) is returned when not z is None; forceint will integrate between -z and z, so the two are inconsistent (If you care to have this changed, raise an issue on github)
  2. for axisymmetric potentials: M(<R,<|Z|)

HISTORY:

2014-01-29 - Written - Bovy (IAS)
galpy.potential.Potential.omegac
Potential.omegac(R)

NAME:

omegac

PURPOSE:

calculate the circular angular speed at R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

circular angular speed

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.Potential.phiforce
Potential.phiforce(R, z, phi=0.0, t=0.0)

NAME:

phiforce

PURPOSE:

evaluate the azimuthal force F_phi (R,z,phi,t)

INPUT:

R - Cylindrical Galactocentric radius

z - vertical height

phi - azimuth (rad)

t - time (optional)

OUTPUT:

F_phi (R,z,phi,t)

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.potential.Potential.phi2deriv
Potential.phi2deriv(R, Z, phi=0.0, t=0.0)

NAME:

phi2deriv

PURPOSE:

evaluate the second azimuthal derivative

INPUT:

R - Galactocentric radius

Z - vertical height

phi - Galactocentric azimuth

t - time

OUTPUT:

d2Phi/dphi2

HISTORY:

2013-09-24 - Written - Bovy (IAS)
galpy.potential.Potential.plot
Potential.plot(t=0.0, rmin=0.0, rmax=1.5, nrs=21, zmin=-0.5, zmax=0.5, nzs=21, effective=False, Lz=None, xrange=None, yrange=None, justcontours=False, ncontours=21, savefilename=None)

NAME:

plot

PURPOSE:

plot the potential

INPUT:

t= time tp plot potential at

rmin= minimum R at which to calculate

rmax= maximum R

nrs= grid in R

zmin= minimum z

zmax= maximum z

nzs= grid in z

effective= (False) if True, plot the effective potential Phi + Lz^2/2/R^2

Lz= (None) angular momentum to use for the effective potential when effective=True

ncontours - number of contours

justcontours= (False) if True, just plot contours

savefilename - save to or restore from this savefile (pickle)

xrange, yrange= can be specified independently from rmin,zmin, etc.

OUTPUT:

plot to output device

HISTORY:

2010-07-09 - Written - Bovy (NYU)

2014-04-08 - Added effective= - Bovy (IAS)

galpy.potential.Potential.plotDensity
Potential.plotDensity(rmin=0.0, rmax=1.5, nrs=21, zmin=-0.5, zmax=0.5, nzs=21, ncontours=21, savefilename=None, aspect=None, log=False, justcontours=False)
NAME:
plotDensity
PURPOSE:
plot the density of this potential

INPUT:

rmin= minimum R

rmax= maximum R

nrs= grid in R

zmin= minimum z

zmax= maximum z

nzs= grid in z

ncontours= number of contours

justcontours= (False) if True, just plot contours

savefilename= save to or restore from this savefile (pickle)

log= if True, plot the log density

OUTPUT:
plot to output device
HISTORY:
2014-01-05 - Written - Bovy (IAS)
galpy.potential.Potential.plotEscapecurve
Potential.plotEscapecurve(*args, **kwargs)

NAME:

plotEscapecurve

PURPOSE:

plot the escape velocity curve for this potential (in the z=0 plane for non-spherical potentials)

INPUT:

Rrange - range

grid= number of points to plot

savefilename= save to or restore from this savefile (pickle)

+bovy_plot(*args,**kwargs)

OUTPUT:

plot to output device

HISTORY:

2010-08-08 - Written - Bovy (NYU)
galpy.potential.Potential.plotRotcurve
Potential.plotRotcurve(*args, **kwargs)

NAME:

plotRotcurve

PURPOSE:

plot the rotation curve for this potential (in the z=0 plane for non-spherical potentials)

INPUT:

Rrange - range

grid= number of points to plot

savefilename=- save to or restore from this savefile (pickle)

+bovy_plot(*args,**kwargs)

OUTPUT:

plot to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.potential.Potential.R2deriv
Potential.R2deriv(R, Z, phi=0.0, t=0.0)

NAME:

R2deriv

PURPOSE:

evaluate the second radial derivative

INPUT:

R - Galactocentric radius

Z - vertical height

phi - Galactocentric azimuth

t - time

OUTPUT:

d2phi/dR2

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.Potential.Rzderiv
Potential.Rzderiv(R, Z, phi=0.0, t=0.0)

NAME:

Rzderiv

PURPOSE:

evaluate the mixed R,z derivative

INPUT:

R - Galactocentric radius

Z - vertical height

phi - Galactocentric azimuth

t - time

OUTPUT:

d2phi/dz/dR

HISTORY:

2013-08-26 - Written - Bovy (IAS)
galpy.potential.Potential.Rforce
Potential.Rforce(R, z, phi=0.0, t=0.0)

NAME:

Rforce

PURPOSE:

evaluate radial force F_R (R,z)

INPUT:

R - Cylindrical Galactocentric radius

z - vertical height

phi - azimuth (optional)

t - time (optional)

OUTPUT:

F_R (R,z,phi,t)

HISTORY:

2010-04-16 - Written - Bovy (NYU)
galpy.potential.Potential.rl
Potential.rl(lz)

NAME:

rl

PURPOSE:

calculate the radius of a circular orbit of Lz

INPUT:

lz - Angular momentum

OUTPUT:

radius

HISTORY:

2012-07-30 - Written - Bovy (IAS@MPIA)

NOTE:

seems to take about ~0.5 ms for a Miyamoto-Nagai potential; ~0.75 ms for a MWPotential
galpy.planar.Potential.toPlanar
Potential.toPlanar()
NAME:
toPlanar
PURPOSE:
convert a 3D potential into a planar potential in the mid-plane
INPUT:
(none)
OUTPUT:
planarPotential

HISTORY

galpy.potential.Potential.toVertical
Potential.toVertical(R)
NAME:
toVertical
PURPOSE:
convert a 3D potential into a linear (vertical) potential at R
INPUT:
R - Galactocentric radius at which to create the vertical potential
OUTPUT:
linear (vertical) potential

HISTORY

galpy.potential.Potential.vcirc
Potential.vcirc(R)

NAME:

vcirc

PURPOSE:

calculate the circular velocity at R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

circular rotation velocity

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.Potential.verticalfreq
Potential.verticalfreq(R)

NAME:

verticalfreq

PURPOSE:

calculate the vertical frequency at R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

vertical frequency

HISTORY:

2012-07-25 - Written - Bovy (IAS@MPIA)
galpy.potential.Potential.vesc
Potential.vesc(R)

NAME:

vesc

PURPOSE:

calculate the escape velocity at R for this potential

INPUT:

R - Galactocentric radius

OUTPUT:

escape velocity

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.Potential.vterm
Potential.vterm(l, deg=True)

NAME:

vterm

PURPOSE:

calculate the terminal velocity at l in this potential

INPUT:

l - Galactic longitude [deg/rad]

deg= if True (default), l in deg

OUTPUT:

terminal velocity

HISTORY:

2013-05-31 - Written - Bovy (IAS)
galpy.potential.Potential.z2deriv
Potential.z2deriv(R, Z, phi=0.0, t=0.0)

NAME:

z2deriv

PURPOSE:

evaluate the second vertical derivative

INPUT:

R - Galactocentric radius

Z - vertical height

phi - Galactocentric azimuth

t - time

OUTPUT:

d2phi/dz2

HISTORY:

2012-07-25 - Written - Bovy (IAS@MPIA)
galpy.potential.Potential.zforce
Potential.zforce(R, z, phi=0.0, t=0.0)

NAME:

zforce

PURPOSE:

evaluate the vertical force F_z (R,z,t)

INPUT:

R - Cylindrical Galactocentric radius

z - vertical height

phi - azimuth (optional)

t - time (optional)

OUTPUT:

F_z (R,z,phi,t)

HISTORY:

2010-04-16 - Written - Bovy (NYU)

In addition to these, the NFWPotential also has methods to calculate virial quantities

galpy.potential.Potential.conc
Potential.conc(vo, ro, H=70.0, Om=0.3, overdens=200.0, wrtcrit=False)

NAME:

conc

PURPOSE:

return the concentration

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

H= (default: 70) Hubble constant in km/s/Mpc

Om= (default: 0.3) Omega matter

overdens= (200) overdensity which defines the virial radius

wrtcrit= (False) if True, the overdensity is wrt the critical density rather than the mean matter density

OUTPUT:

concentration (scale/rvir)

HISTORY:

2014-04-03 - Written - Bovy (IAS)
galpy.potential.Potential.mvir
Potential.mvir(vo, ro, H=70.0, Om=0.3, overdens=200.0, wrtcrit=False, forceint=False)

NAME:

mvir

PURPOSE:

calculate the virial mass

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

H= (default: 70) Hubble constant in km/s/Mpc

Om= (default: 0.3) Omega matter

overdens= (200) overdensity which defines the virial radius

wrtcrit= (False) if True, the overdensity is wrt the critical density rather than the mean matter density

KEYWORDS:

forceint= if True, calculate the mass through integration of the density, even if an explicit expression for the mass exists

OUTPUT:

M(<rvir)

HISTORY:

2014-09-12 - Written - Bovy (IAS)
galpy.potential.NFWPotential.rvir
NFWPotential.rvir(vo, ro, H=70.0, Om=0.3, overdens=200.0, wrtcrit=False)

NAME:

rvir

PURPOSE:

calculate the virial radius for this density distribution

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

H= (default: 70) Hubble constant in km/s/Mpc

Om= (default: 0.3) Omega matter

overdens= (200) overdensity which defines the virial radius

wrtcrit= (False) if True, the overdensity is wrt the critical density rather than the mean matter density

OUTPUT:

virial radius in natural units

HISTORY:

2014-01-29 - Written - Bovy (IAS)
General 3D potential routines

Use as method(...)

galpy.potential.dvcircdR
galpy.potential.dvcircdR(Pot, R)

NAME:

dvcircdR

PURPOSE:

calculate the derivative of the circular velocity wrt R at R in potential Pot

INPUT:

Pot - Potential instance or list of such instances

R - Galactocentric radius

OUTPUT:

derivative of the circular rotation velocity wrt R

HISTORY:

2013-01-08 - Written - Bovy (IAS)
galpy.potential.epifreq
galpy.potential.epifreq(Pot, R)

NAME:

epifreq

PURPOSE:

calculate the epicycle frequency at R in the potential Pot

INPUT:

Pot - Potential instance or list thereof

R - Galactocentric radius

OUTPUT:

epicycle frequency

HISTORY:

2012-07-25 - Written - Bovy (IAS)
galpy.potential.evaluateDensities
galpy.potential.evaluateDensities(R, z, Pot, phi=0.0, t=0.0, forcepoisson=False)

NAME:

evaluateDensities

PURPOSE:

convenience function to evaluate a possible sum of densities

INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - potential or list of potentials

phi - azimuth

t - time

forcepoisson= if True, calculate the density through the Poisson equation, even if an explicit expression for the density exists

OUTPUT:

rho(R,z)

HISTORY:

2010-08-08 - Written - Bovy (NYU)

2013-12-28 - Added forcepoisson - Bovy (IAS)

galpy.potential.evaluatephiforces
galpy.potential.evaluatephiforces(R, z, Pot, phi=0.0, t=0.0)

NAME:

evaluatephiforces

PURPOSE:

convenience function to evaluate a possible sum of potentials
INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - a potential or list of potentials

phi - azimuth (optional)

t - time (optional)

OUTPUT:

F_phi(R,z,phi,t)

HISTORY:

2010-04-16 - Written - Bovy (NYU)
galpy.potential.evaluatePotentials
galpy.potential.evaluatePotentials(R, z, Pot, phi=0.0, t=0.0, dR=0, dphi=0)
NAME:
evaluatePotentials
PURPOSE:
convenience function to evaluate a possible sum of potentials
INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - potential or list of potentials

phi - azimuth

t - time

dR= dphi=, if set to non-zero integers, return the dR, dphi’t derivative instead

OUTPUT:
Phi(R,z)
HISTORY:
2010-04-16 - Written - Bovy (NYU)
galpy.potential.evaluateR2derivs
galpy.potential.evaluateR2derivs(R, z, Pot, phi=0.0, t=0.0)
NAME:
evaluateR2derivs
PURPOSE:
convenience function to evaluate a possible sum of potentials
INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - a potential or list of potentials

phi - azimuth (optional)

t - time (optional)

OUTPUT:
d2Phi/d2R(R,z,phi,t)
HISTORY:
2012-07-25 - Written - Bovy (IAS)
galpy.potential.evaluateRzderivs
galpy.potential.evaluateRzderivs(R, z, Pot, phi=0.0, t=0.0)
NAME:
evaluateRzderivs
PURPOSE:
convenience function to evaluate a possible sum of potentials
INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - a potential or list of potentials

phi - azimuth (optional)

t - time (optional)

OUTPUT:
d2Phi/dz/dR(R,z,phi,t)
HISTORY:
2013-08-28 - Written - Bovy (IAS)
galpy.potential.evaluateRforces
galpy.potential.evaluateRforces(R, z, Pot, phi=0.0, t=0.0)
NAME:
evaluateRforce
PURPOSE:
convenience function to evaluate a possible sum of potentials
INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - a potential or list of potentials

phi - azimuth (optional)

t - time (optional)

OUTPUT:
F_R(R,z,phi,t)
HISTORY:
2010-04-16 - Written - Bovy (NYU)
galpy.potential.evaluatez2derivs
galpy.potential.evaluatez2derivs(R, z, Pot, phi=0.0, t=0.0)
NAME:
evaluatez2derivs
PURPOSE:
convenience function to evaluate a possible sum of potentials
INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - a potential or list of potentials

phi - azimuth (optional)

t - time (optional)

OUTPUT:
d2Phi/d2z(R,z,phi,t)
HISTORY:
2012-07-25 - Written - Bovy (IAS)
galpy.potential.evaluatezforces
galpy.potential.evaluatezforces(R, z, Pot, phi=0.0, t=0.0)

NAME:

evaluatezforces

PURPOSE:

convenience function to evaluate a possible sum of potentials

INPUT:

R - cylindrical Galactocentric distance

z - distance above the plane

Pot - a potential or list of potentials

phi - azimuth (optional)

t - time (optional)

OUTPUT:

F_z(R,z,phi,t)

HISTORY:

2010-04-16 - Written - Bovy (NYU)
galpy.potential.flattening
galpy.potential.flattening(Pot, R, z)

NAME:

flattening

PURPOSE:

calculate the potential flattening, defined as sqrt(|z/R F_R/F_z|)

INPUT:

Pot - Potential instance or list thereof

R - Galactocentric radius

z - height

OUTPUT:

flattening

HISTORY:

2012-09-13 - Written - Bovy (IAS)
galpy.potential.lindbladR
galpy.potential.lindbladR(Pot, OmegaP, m=2, **kwargs)

NAME:

lindbladR

PURPOSE:

calculate the radius of a Lindblad resonance

INPUT:

Pot - Potential instance or list of such instances

OmegaP - pattern speed

m= order of the resonance (as in m(O-Op)=kappa (negative m for outer)
use m=’corotation’ for corotation

+scipy.optimize.brentq xtol,rtol,maxiter kwargs

OUTPUT:

radius of Linblad resonance, None if there is no resonance

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.omegac
galpy.potential.omegac(Pot, R)

NAME:

omegac

PURPOSE:

calculate the circular angular speed velocity at R in potential Pot

INPUT:

Pot - Potential instance or list of such instances

R - Galactocentric radius

OUTPUT:

circular angular speed

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.plotDensities
galpy.potential.plotDensities(Pot, rmin=0.0, rmax=1.5, nrs=21, zmin=-0.5, zmax=0.5, nzs=21, ncontours=21, savefilename=None, aspect=None, log=False, justcontours=False)

NAME:

plotDensities

PURPOSE:

plot the density a set of potentials

INPUT:

Pot - Potential or list of Potential instances

rmin= minimum R

rmax= maximum R

nrs= grid in R

zmin= minimum z

zmax= maximum z

nzs= grid in z

ncontours= number of contours

justcontours= (False) if True, just plot contours

savefilename= save to or restore from this savefile (pickle)

log= if True, plot the log density

OUTPUT:
plot to output device
HISTORY:
2013-07-05 - Written - Bovy (IAS)
galpy.potential.plotEscapecurve
galpy.potential.plotEscapecurve(Pot, *args, **kwargs)

NAME:

plotEscapecurve

PURPOSE:

plot the escape velocity curve for this potential (in the z=0 plane for non-spherical potentials)

INPUT:

Pot - Potential or list of Potential instances

Rrange= Range in R to consider

grid= grid in R

savefilename= save to or restore from this savefile (pickle)

+bovy_plot.bovy_plot args and kwargs

OUTPUT:

plot to output device

HISTORY:

2010-08-08 - Written - Bovy (NYU)
galpy.potential.plotPotentials
galpy.potential.plotPotentials(Pot, rmin=0.0, rmax=1.5, nrs=21, zmin=-0.5, zmax=0.5, nzs=21, ncontours=21, savefilename=None, aspect=None, justcontours=False)

NAME:

plotPotentials

PURPOSE:

plot a set of potentials

INPUT:

Pot - Potential or list of Potential instances

rmin= minimum R

rmax= maximum R

nrs= grid in R

zmin= minimum z

zmax= maximum z

nzs= grid in z

ncontours= number of contours

justcontours= (False) if True, just plot contours

savefilename= save to or restore from this savefile (pickle)

OUTPUT:

plot to output device

HISTORY:

2010-07-09 - Written - Bovy (NYU)
galpy.potential.plotRotcurve
galpy.potential.plotRotcurve(Pot, *args, **kwargs)

NAME:

plotRotcurve

PURPOSE:

plot the rotation curve for this potential (in the z=0 plane for non-spherical potentials)

INPUT:

Pot - Potential or list of Potential instances

Rrange - Range in R to consider

grid= grid in R

savefilename= save to or restore from this savefile (pickle)

+bovy_plot.bovy_plot args and kwargs

OUTPUT:

plot to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.potential.rl
galpy.potential.rl(Pot, lz)

NAME:

rl

PURPOSE:

calculate the radius of a circular orbit of Lz

INPUT:

Pot - Potential instance or list thereof

lz - Angular momentum

OUTPUT:

radius

HISTORY:

2012-07-30 - Written - Bovy (IAS@MPIA)

NOTE:

seems to take about ~0.5 ms for a Miyamoto-Nagai potential; ~0.75 ms for a MWPotential
galpy.potential.vcirc
galpy.potential.vcirc(Pot, R)

NAME:

vcirc

PURPOSE:

calculate the circular velocity at R in potential Pot

INPUT:

Pot - Potential instance or list of such instances

R - Galactocentric radius

OUTPUT:

circular rotation velocity

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.verticalfreq
galpy.potential.verticalfreq(Pot, R)

NAME:

verticalfreq

PURPOSE:

calculate the vertical frequency at R in the potential Pot

INPUT:

Pot - Potential instance or list thereof

R - Galactocentric radius

OUTPUT:

vertical frequency

HISTORY:

2012-07-25 - Written - Bovy (IAS@MPIA)
galpy.potential.vesc
galpy.potential.vesc(Pot, R)

NAME:

vesc

PURPOSE:

calculate the escape velocity at R for potential Pot

INPUT:

Pot - Potential instances or list thereof

R - Galactocentric radius

OUTPUT:

escape velocity

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.vterm
galpy.potential.vterm(Pot, l, deg=True)

NAME:

vterm

PURPOSE:

calculate the terminal velocity at l in this potential

INPUT:

Pot - Potential instance

l - Galactic longitude [deg/rad]

deg= if True (default), l in deg

OUTPUT:

terminal velocity

HISTORY:

2013-05-31 - Written - Bovy (IAS)
Specific potentials
Burkert potential
class galpy.potential.BurkertPotential(amp=1.0, a=2.0, normalize=False)

BurkertPotential.py: Potential with a Burkert density

\[\rho(r) = \frac{\mathrm{amp}}{(1+r/a)\,(1+[r/a]^2)}\]
__init__(amp=1.0, a=2.0, normalize=False)

NAME:

__init__

PURPOSE:

initialize a Burkert-density potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

a = scale radius

normalize - if True, normalize such that vc(1.,0.)=1., or, if
given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2013-04-10 - Written - Bovy (IAS)
Double exponential disk potential
class galpy.potential.DoubleExponentialDiskPotential(amp=1.0, hr=0.3333333333333333, hz=0.0625, maxiter=20, tol=0.001, normalize=False, new=True, kmaxFac=2.0, glorder=10)

Class that implements the double exponential disk potential

\[\rho(R,z) = \mathrm{amp}\,\exp\left(-R/h_R-|z|/h_z\right)\]
__init__(amp=1.0, hr=0.3333333333333333, hz=0.0625, maxiter=20, tol=0.001, normalize=False, new=True, kmaxFac=2.0, glorder=10)

NAME:

__init__

PURPOSE:

initialize a double-exponential disk potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

hr - disk scale-length

hz - scale-height

tol - relative accuracy of potential-evaluations

maxiter - scipy.integrate keyword

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

DoubleExponentialDiskPotential object

HISTORY:

2010-04-16 - Written - Bovy (NYU)

2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS)

Double power-law density spherical potential
class galpy.potential.TwoPowerSphericalPotential(amp=1.0, a=5.0, alpha=1.5, beta=3.5, normalize=False)

Class that implements spherical potentials that are derived from two-power density models

\[\rho(r) = \frac{\mathrm{amp}}{4\,\pi\,a^3}\,\frac{1}{(r/a)^\alpha\,(1+r/a)^{\beta-\alpha}}\]
__init__(amp=1.0, a=5.0, alpha=1.5, beta=3.5, normalize=False)

NAME:

__init__

PURPOSE:

initialize a two-power-density potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

a - “scale” (in terms of Ro)

alpha - inner power

beta - outer power

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2010-07-09 - Started - Bovy (NYU)
Jaffe potential
class galpy.potential.JaffePotential(amp=1.0, a=1.0, normalize=False)

Class that implements the Jaffe potential

\[\rho(r) = \frac{\mathrm{amp}}{4\,\pi\,a^3}\,\frac{1}{(r/a)^2\,(1+r/a)^{2}}\]
__init__(amp=1.0, a=1.0, normalize=False)

NAME:

__init__

PURPOSE:

Initialize a Jaffe potential

INPUT:

amp - amplitude to be applied to the potential

a - “scale” (in terms of Ro)

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2010-07-09 - Written - Bovy (NYU)
Flattened Power-law potential

Flattening is in the potential as in Evans (1994) rather than in the density

class galpy.potential.FlattenedPowerPotential(amp=1.0, alpha=0.5, q=0.9, core=1e-08, normalize=False)

Class that implements a power-law potential that is flattened in the potential (NOT the density)

\[\Phi(R,z) = -\frac{\mathrm{amp}}{\alpha\,\left(R^2+(z/q)^2+\mathrm{core}^2\right)^{\alpha/2}}\]

and the same as LogarithmicHaloPotential for \(\alpha=0\)

See Figure 1 in Evans (1994) for combinations of alpha and q that correspond to positive densities

__init__(amp=1.0, alpha=0.5, q=0.9, core=1e-08, normalize=False)

NAME:

__init__

PURPOSE:

initialize a flattened power-law potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

alpha - power

q - flattening

core - core radius

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2013-01-09 - Written - Bovy (IAS)
Hernquist potential
class galpy.potential.HernquistPotential(amp=1.0, a=1.0, normalize=False)

Class that implements the Hernquist potential

\[\rho(r) = \frac{\mathrm{amp}}{4\,\pi\,a^3}\,\frac{1}{(r/a)\,(1+r/a)^{3}}\]
__init__(amp=1.0, a=1.0, normalize=False)

NAME:

__init__

PURPOSE:

Initialize a Hernquist potential

INPUT:

amp - amplitude to be applied to the potential

a - “scale” (in terms of Ro)

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2010-07-09 - Written - Bovy (NYU)
Interpolated axisymmetric potential

The interpRZPotential class provides a general interface to generate interpolated instances of general three-dimensional, axisymmetric potentials or lists of such potentials. This interpolated potential can be used in any function where other three-dimensional galpy potentials can be used. This includes functions that use C to speed up calculations, if the interpRZPotential instance was set up with enable_c=True. Initialize as

>>> from galpy import potential
>>> ip= potential.interpRZPotential(potential.MWPotential,interpPot=True)

which sets up an interpolation of the potential itself only. The potential and all different forces and functions (dens,``vcirc``, epifreq, verticalfreq, dvcircdR) are interpolated separately and one needs to specify that these need to be interpolated separately (so, for example, one needs to set interpRforce=True to interpolate the radial force, or interpvcirc=True to interpolate the circular velocity).

When points outside the grid are requested within the python code, the instance will fall back on the original (non-interpolated) potential. However, when the potential is used purely in C, like during orbit integration in C or during action–angle evaluations in C, there is no way for the potential to fall back onto the original potential and nonsense or NaNs will be returned. Therefore, when using interpRZPotential in C, one must make sure that the whole relevant part of the (R,z) plane is covered. One more time:

Warning

When an interpolated potential is used purely in C, like during orbit integration in C or during action–angle evaluations in C, there is no way for the potential to fall back onto the original potential and nonsense or NaNs will be returned. Therefore, when using interpRZPotential in C, one must make sure that the whole relevant part of the (R,z) plane is covered.

class galpy.potential.interpRZPotential(RZPot=None, rgrid=(-4.6051701859880909, 2.9957322735539909, 101), zgrid=(0.0, 1.0, 101), logR=True, interpPot=False, interpRforce=False, interpzforce=False, interpDens=False, interpvcirc=False, interpdvcircdr=False, interpepifreq=False, interpverticalfreq=False, use_c=False, enable_c=False, zsym=True, numcores=None)

Class that interpolates a given potential on a grid for fast orbit integration

__init__(RZPot=None, rgrid=(-4.6051701859880909, 2.9957322735539909, 101), zgrid=(0.0, 1.0, 101), logR=True, interpPot=False, interpRforce=False, interpzforce=False, interpDens=False, interpvcirc=False, interpdvcircdr=False, interpepifreq=False, interpverticalfreq=False, use_c=False, enable_c=False, zsym=True, numcores=None)

NAME:

__init__

PURPOSE:

Initialize an interpRZPotential instance

INPUT:

RZPot - RZPotential to be interpolated

rgrid - R grid to be given to linspace as in rs= linspace(*rgrid)

zgrid - z grid to be given to linspace as in zs= linspace(*zgrid)

logR - if True, rgrid is in the log of R so logrs= linspace(*rgrid)

interpPot, interpRforce, interpzforce, interpDens,interpvcirc, interpepifreq, interpverticalfreq, interpdvcircdr= if True, interpolate these functions

use_c= use C to speed up the calculation of the grid

enable_c= enable use of C for interpolations

zsym= if True (default), the potential is assumed to be symmetric around z=0 (so you can use, e.g., zgrid=(0.,1.,101)).

numcores= if set to an integer, use this many cores (only used for vcirc, dvcircdR, epifreq, and verticalfreq; NOT NECESSARILY FASTER, TIME TO MAKE SURE)

OUTPUT:

instance

HISTORY:

2010-07-21 - Written - Bovy (NYU)

2013-01-24 - Started with new implementation - Bovy (IAS)

Isochrone potential
class galpy.potential.IsochronePotential(amp=1.0, b=1.0, normalize=False)

Class that implements the Isochrone potential

\[\Phi(r) = -\frac{\mathrm{amp}}{b+\sqrt{b^2+r^2}}\]
__init__(amp=1.0, b=1.0, normalize=False)

NAME:

__init__

PURPOSE:

initialize an isochrone potential

INPUT:

amp= amplitude to be applied to the potential (default: 1)

b= scale radius of the isochrone potential

normalize= if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2013-09-08 - Written - Bovy (IAS)
Kepler potential
class galpy.potential.KeplerPotential(amp=1.0, normalize=False)

Class that implements the Kepler potential

\[\Phi(r) = -\frac{\mathrm{amp}}{r}\]
__init__(amp=1.0, normalize=False)

NAME:

__init__

PURPOSE:

initialize a Kepler potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

alpha - inner power

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2010-07-10 - Written - Bovy (NYU)
Logarithmic halo potential
class galpy.potential.LogarithmicHaloPotential(amp=1.0, core=1e-08, q=1.0, normalize=False)

Class that implements the logarithmic halo potential

\[\Phi(R,z) = \frac{\mathrm{amp}}{2}\,\ln\left(R^2+(z/q)^2+\mathrm{core}^2\right)\]
__init__(amp=1.0, core=1e-08, q=1.0, normalize=False)

NAME:

__init__

PURPOSE:

initialize a Logarithmic Halo potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

core - core radius at which the logarithm is cut

q - potential flattening (z/q)**2.

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2010-04-02 - Started - Bovy (NYU)
Miyamoto-Nagai potential
class galpy.potential.MiyamotoNagaiPotential(amp=1.0, a=1.0, b=0.1, normalize=False)

Class that implements the Miyamoto-Nagai potential

\[\Phi(R,z) = -\frac{\mathrm{amp}}{\sqrt{R^2+(a+\sqrt{z^2+b^2})^2}}\]
__init__(amp=1.0, a=1.0, b=0.1, normalize=False)

NAME:

__init__

PURPOSE:

initialize a Miyamoto-Nagai potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

a - “disk scale” (in terms of Ro)

b - “disk height” (in terms of Ro)

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2010-07-09 - Started - Bovy (NYU)
Moving object potential
class galpy.potential.MovingObjectPotential(orbit, amp=1.0, GM=0.06, softening=None, softening_model='plummer', softening_length=0.01)

Class that implements the potential coming from a moving object

\[\Phi(R,z,\phi,t) = -\mathrm{amp}\,GM\,S(d)\]

where \(d\) is the distance between \((R,z,\phi)\) and the moving object at time \(t\) and \(S(\cdot)\) is a softening kernel. In the case of Plummer softening, this kernel is

\[S(d) = \frac{1}{\sqrt{d^2+\mathrm{softening\_length}^2}}\]

Plummer is currently the only implemented softening.

__init__(orbit, amp=1.0, GM=0.06, softening=None, softening_model='plummer', softening_length=0.01)

NAME:

__init__

PURPOSE:

initialize a MovingObjectPotential

INPUT:

orbit - the Orbit of the object (Orbit object)

amp= - amplitude to be applied to the potential (default: 1)

GM - ‘mass’ of the object (degenerate with amp)

Softening: either provide

  1. softening= with a ForceSoftening-type object

  2. softening_model= type of softening to use (‘plummer’)

    softening_length= (optional)

OUTPUT:

(none)

HISTORY:

2011-04-10 - Started - Bovy (NYU)
NFW potential
class galpy.potential.NFWPotential(amp=1.0, a=1.0, normalize=False, conc=None, mvir=None, vo=220.0, ro=8.0, H=70.0, Om=0.3, overdens=200.0, wrtcrit=False)

Class that implements the NFW potential

\[\rho(r) = \frac{\mathrm{amp}}{4\,\pi\,a^3}\,\frac{1}{(r/a)\,(1+r/a)^{2}}\]
__init__(amp=1.0, a=1.0, normalize=False, conc=None, mvir=None, vo=220.0, ro=8.0, H=70.0, Om=0.3, overdens=200.0, wrtcrit=False)

NAME:

__init__

PURPOSE:

Initialize a NFW potential

INPUT:

amp - amplitude to be applied to the potential

a - “scale” (in terms of Ro)

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

Alternatively, NFW potentials can be initialized using

conc= concentration

mvir= virial mass in 10^12 Msolar

in which case you also need to supply the following keywords

vo= (220.) velocity unit in km/s

ro= (8.) length unit in kpc

H= (default: 70) Hubble constant in km/s/Mpc

Om= (default: 0.3) Omega matter

overdens= (200) overdensity which defines the virial radius

wrtcrit= (False) if True, the overdensity is wrt the critical density rather than the mean matter density

OUTPUT:

(none)

HISTORY:

2010-07-09 - Written - Bovy (NYU)

2014-04-03 - Initialization w/ concentration and mass - Bovy (IAS)

Power-law density spherical potential
class galpy.potential.PowerSphericalPotential(amp=1.0, alpha=1.0, normalize=False)

Class that implements spherical potentials that are derived from power-law density models

\[\rho(r) = \mathrm{amp}\,\frac{3-\alpha}{4\,\pi}\,r^{-\alpha}\]
__init__(amp=1.0, alpha=1.0, normalize=False)

NAME:

__init__

PURPOSE:

initialize a power-law-density potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

alpha - inner power

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2010-07-10 - Written - Bovy (NYU)
Power-law density spherical potential with an exponential cut-off
class galpy.potential.PowerSphericalPotentialwCutoff(amp=1.0, alpha=1.0, rc=1.0, normalize=False)

Class that implements spherical potentials that are derived from power-law density models

\[\rho(r) = \frac{\mathrm{amp}}{r^\alpha}\,\exp\left(-(r/rc)^2\right)\]
__init__(amp=1.0, alpha=1.0, rc=1.0, normalize=False)

NAME:

__init__

PURPOSE:

initialize a power-law-density potential

INPUT:

amp= amplitude to be applied to the potential (default: 1)

alpha= inner power

rc= cut-off radius

normalize= if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

(none)

HISTORY:

2013-06-28 - Written - Bovy (IAS)
Razor-thin exponential disk potential
class galpy.potential.RazorThinExponentialDiskPotential(amp=1.0, ro=1.0, hr=0.3333333333333333, maxiter=20, tol=0.001, normalize=False, new=True, glorder=100)

Class that implements the razor-thin exponential disk potential

\[\rho(R,z) = \mathrm{amp}\,\exp\left(-R/h_R\right)\,\delta(z)\]
__init__(amp=1.0, ro=1.0, hr=0.3333333333333333, maxiter=20, tol=0.001, normalize=False, new=True, glorder=100)

NAME:

__init__

PURPOSE:

initialize a razor-thin-exponential disk potential

INPUT:

amp - amplitude to be applied to the potential (default: 1)

hr - disk scale-length in terms of ro

tol - relative accuracy of potential-evaluations

maxiter - scipy.integrate keyword

normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

OUTPUT:

RazorThinExponentialDiskPotential object

HISTORY:

2012-12-27 - Written - Bovy (IAS)

In addition to these classes, a simple Milky-Way-like potential fit to data on the Milky Way is included as galpy.potential.MWPotential2014 (see the galpy paper for details). This potential is defined as

>>> bp= PowerSphericalPotentialwCutoff(alpha=1.8,rc=1.9/8.,normalize=0.05)
>>> mp= MiyamotoNagaiPotential(a=3./8.,b=0.28/8.,normalize=.6)
>>> np= NFWPotential(a=16/8.,normalize=.35)
>>> MWPotential2014= [bp,mp,np]

and can thus be used like any list of Potentials. If one wants to add the supermassive black hole at the Galactic center, this can be done by

>>> from galpy.potential import KeplerPotential
>>> from galpy.util import bovy_conversion
>>> MWPotential2014.append(KeplerPotential(amp=4*10**6./bovy_conversion.mass_in_msol(220.,8.)))

for a black hole with a mass of \(4\times10^6\,M_{\odot}\).

An older version galpy.potential.MWPotential of a similar potential that was not fit to data on the Milky Way is defined as

>>> mp= MiyamotoNagaiPotential(a=0.5,b=0.0375,normalize=.6)
>>> np= NFWPotential(a=4.5,normalize=.35)
>>> hp= HernquistPotential(a=0.6/8,normalize=0.05)
>>> MWPotential= [mp,np,hp]

galpy.potential.MWPotential2014 supersedes galpy.potential.MWPotential.

2D potentials

General instance routines

Use as Potential-instance.method(...)

galpy.potential.planarPotential.__call__
planarPotential.__call__(R, phi=0.0, t=0.0, dR=0, dphi=0)

NAME:

__call__

PURPOSE:

evaluate the potential

INPUT:

R - Cylindrica radius

phi= azimuth (optional)

t= time (optional)

dR=, dphi= if set to non-zero integers, return the dR,dphi’t derivative

OUTPUT:

Phi(R(,phi,t)))

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.planarPotential.phiforce
planarPotential.phiforce(R, phi=0.0, t=0.0)

NAME:

phiforce

PURPOSE:

evaluate the phi force

INPUT:

R - Cylindrical radius

phi= azimuth (optional)

t= time (optional)

OUTPUT:

F_phi(R,(phi,t)))

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.planarPotential.Rforce
planarPotential.Rforce(R, phi=0.0, t=0.0)

NAME:

Rforce

PURPOSE:

evaluate the radial force

INPUT:

R - Cylindrical radius

phi= azimuth (optional)

t= time (optional)

OUTPUT:

F_R(R,(phi,t)))

HISTORY:

2010-07-13 - Written - Bovy (NYU)
General axisymmetric potential instance routines

Use as Potential-instance.method(...)

galpy.potential.planarAxiPotential.epifreq
Potential.epifreq(R)

NAME:

epifreq

PURPOSE:

calculate the epicycle frequency at R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

epicycle frequency

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.planarAxiPotential.lindbladR
Potential.lindbladR(OmegaP, m=2, **kwargs)

NAME:

lindbladR

PURPOSE:

calculate the radius of a Lindblad resonance

INPUT:

OmegaP - pattern speed

m= order of the resonance (as in m(O-Op)=kappa (negative m for outer)
use m=’corotation’ for corotation +scipy.optimize.brentq xtol,rtol,maxiter kwargs

OUTPUT:

radius of Linblad resonance, None if there is no resonance

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.planarAxiPotential.omegac
Potential.omegac(R)

NAME:

omegac

PURPOSE:

calculate the circular angular speed at R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

circular angular speed

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.planarAxiPotential.plot
planarAxiPotential.plot(*args, **kwargs)
NAME:
plot
PURPOSE:
plot the potential
INPUT:
Rrange - range grid - number of points to plot savefilename - save to or restore from this savefile (pickle) +bovy_plot(*args,**kwargs)
OUTPUT:
plot to output device
HISTORY:
2010-07-13 - Written - Bovy (NYU)
galpy.potential.planarAxiPotential.plotEscapecurve
planarAxiPotential.plotEscapecurve(*args, **kwargs)

NAME:

plotEscapecurve

PURPOSE:

plot the escape velocity curve for this potential

INPUT:

Rrange - range

grid - number of points to plot

savefilename - save to or restore from this savefile (pickle)

+bovy_plot(*args,**kwargs)

OUTPUT:

plot to output device

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.planarAxiPotential.plotRotcurve
planarAxiPotential.plotRotcurve(*args, **kwargs)

NAME:

plotRotcurve

PURPOSE:

plot the rotation curve for this potential

INPUT:

Rrange - range

grid - number of points to plot

savefilename - save to or restore from this savefile (pickle)

+bovy_plot(*args,**kwargs)

OUTPUT:

plot to output device

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.planarAxiPotential.vcirc
Potential.vcirc(R)

NAME:

vcirc

PURPOSE:

calculate the circular velocity at R in this potential

INPUT:

R - Galactocentric radius

OUTPUT:

circular rotation velocity

HISTORY:

2011-10-09 - Written - Bovy (IAS)
galpy.potential.planarAxiPotential.vesc
Potential.vesc(R)

NAME:

vesc

PURPOSE:

calculate the escape velocity at R for this potential

INPUT:

R - Galactocentric radius

OUTPUT:

escape velocity

HISTORY:

2011-10-09 - Written - Bovy (IAS)
General 2D potential routines

Use as method(...)

galpy.potential.evaluateplanarphiforces
galpy.potential.evaluateplanarphiforces(R, Pot, phi=None, t=0.0)

NAME:

evaluateplanarphiforces

PURPOSE:

evaluate the phiforce of a (list of) planarPotential instance(s)

INPUT:

R - Cylindrical radius

Pot - (list of) planarPotential instance(s)

phi= azimuth (optional)

t= time (optional)

OUTPUT:

F_phi(R(,phi,t))

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.evaluateplanarPotentials
galpy.potential.evaluateplanarPotentials(R, Pot, phi=None, t=0.0, dR=0, dphi=0)

NAME:

evaluateplanarPotentials

PURPOSE:

evaluate a (list of) planarPotential instance(s)

INPUT:

R - Cylindrical radius

Pot - (list of) planarPotential instance(s)

phi= azimuth (optional)

t= time (optional)

dR=, dphi= if set to non-zero integers, return the dR,dphi’t derivative instead

OUTPUT:

Phi(R(,phi,t))

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.evaluateplanarRforces
galpy.potential.evaluateplanarRforces(R, Pot, phi=None, t=0.0)

NAME:

evaluateplanarRforces

PURPOSE:

evaluate the Rforce of a (list of) planarPotential instance(s)

INPUT:

R - Cylindrical radius

Pot - (list of) planarPotential instance(s)

phi= azimuth (optional)

t= time (optional)

OUTPUT:

F_R(R(,phi,t))

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.evaluateplanarR2derivs
galpy.potential.evaluateplanarR2derivs(R, Pot, phi=None, t=0.0)

NAME:

evaluateplanarR2derivs

PURPOSE:

evaluate the second radial derivative of a (list of) planarPotential instance(s)

INPUT:

R - Cylindrical radius

Pot - (list of) planarPotential instance(s)

phi= azimuth (optional)

t= time (optional)

OUTPUT:

F_R(R(,phi,t))

HISTORY:

2010-10-09 - Written - Bovy (IAS)
galpy.potential.LinShuReductionFactor
galpy.potential.LinShuReductionFactor(axiPot, R, sigmar, nonaxiPot=None, k=None, m=None, OmegaP=None)

NAME:

LinShuReductionFactor

PURPOSE:

Calculate the Lin & Shu (1966) reduction factor: the reduced linear response of a kinematically-warm stellar disk to a perturbation

INPUT:

axiPot - The background, axisymmetric potential

R - Cylindrical radius

sigmar - radial velocity dispersion of the population

Then either provide:

  1. m= m in the perturbation’s m x phi (number of arms for a spiral)

    k= wavenumber (see Binney & Tremaine 2008)

    OmegaP= pattern speed

  2. nonaxiPot= a non-axisymmetric Potential instance (such as SteadyLogSpiralPotential) that has functions that return OmegaP, m, and wavenumber

OUTPUT:

reduction factor

HISTORY:

2014-08-23 - Written - Bovy (IAS)
galpy.potential.plotEscapecurve
galpy.potential.plotEscapecurve(Pot, *args, **kwargs)

NAME:

plotEscapecurve

PURPOSE:

plot the escape velocity curve for this potential (in the z=0 plane for non-spherical potentials)

INPUT:

Pot - Potential or list of Potential instances

Rrange= Range in R to consider

grid= grid in R

savefilename= save to or restore from this savefile (pickle)

+bovy_plot.bovy_plot args and kwargs

OUTPUT:

plot to output device

HISTORY:

2010-08-08 - Written - Bovy (NYU)
galpy.potential.plotplanarPotentials
galpy.potential.plotplanarPotentials(Pot, *args, **kwargs)

NAME:

plotplanarPotentials

PURPOSE:

plot a planar potential

INPUT:

Rrange - range

xrange, yrange - if relevant

grid, gridx, gridy - number of points to plot

savefilename - save to or restore from this savefile (pickle)

ncontours - number of contours to plot (if applicable)

+bovy_plot(*args,**kwargs) or bovy_dens2d(**kwargs)

OUTPUT:

plot to output device

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.plotRotcurve
galpy.potential.plotRotcurve(Pot, *args, **kwargs)

NAME:

plotRotcurve

PURPOSE:

plot the rotation curve for this potential (in the z=0 plane for non-spherical potentials)

INPUT:

Pot - Potential or list of Potential instances

Rrange - Range in R to consider

grid= grid in R

savefilename= save to or restore from this savefile (pickle)

+bovy_plot.bovy_plot args and kwargs

OUTPUT:

plot to output device

HISTORY:

2010-07-10 - Written - Bovy (NYU)
Specific potentials

All of the 3D potentials above can be used as two-dimensional potentials in the mid-plane.

galpy.potential.RZToplanarPotential
galpy.potential.RZToplanarPotential(RZPot)

NAME:

RZToplanarPotential

PURPOSE:

convert an RZPotential to a planarPotential in the mid-plane (z=0)

INPUT:

RZPot - RZPotential instance or list of such instances (existing planarPotential instances are just copied to the output)

OUTPUT:

planarPotential instance(s)

HISTORY:

2010-07-13 - Written - Bovy (NYU)

In addition, a two-dimensional bar potential and a two spiral potentials are included

Dehnen bar potential
class galpy.potential.DehnenBarPotential(amp=1.0, omegab=None, rb=None, chi=0.8, rolr=0.9, barphi=0.4363323129985824, tform=-4.0, tsteady=None, beta=0.0, alpha=0.01, Af=None)

Class that implements the Dehnen bar potential (Dehnen 2000)

\[\begin{split}\Phi(R,\phi) = A_b(t)\,\cos\left(2\,(\phi-\Omega_b\,t)\right))\times \begin{cases} -(R_b/R)^3\,, & \text{for}\ R \geq R_b\\ (R/R_b)^3-2\,, & \text{for}\ R\leq R_b. \end{cases}\end{split}\]

where

\[A_b(t) = \frac{\alpha}{3\,R_b^3}\,\left(\frac{3}{16}\xi^5-\frac{5}{8}\xi^3+\frac{15}{16}\xi+\frac{1}{2}\right)\,, \xi = 2\frac{t/T_b-t_\mathrm{form}}{T_\mathrm{steady}}-1\,,\ \mathrm{if}\ t_\mathrm{form} \leq \frac{t}{T_b} \leq t_\mathrm{form}+T_\mathrm{steady}\]

and

\[\begin{split}A_b(t) = \begin{cases} 0\,, & \frac{t}{T_b} < t_\mathrm{form}\\ \frac{\alpha}{3\,R_b^3}\,, & \frac{t}{T_b} > t_\mathrm{form}+T_\mathrm{steady} \end{cases}\end{split}\]

where

\[T_b = \frac{2\pi}{\Omega_b}\]

is the bar period.

__init__(amp=1.0, omegab=None, rb=None, chi=0.8, rolr=0.9, barphi=0.4363323129985824, tform=-4.0, tsteady=None, beta=0.0, alpha=0.01, Af=None)

NAME:

__init__

PURPOSE:

initialize a Dehnen bar potential

INPUT:

amp - amplitude to be applied to the potential (default: 1., see alpha or Ab below)

barphi - angle between sun-GC line and the bar’s major axis (in rad; default=25 degree)

tform - start of bar growth / bar period (default: -4)

tsteady - time from tform at which the bar is fully grown / bar period (default: -tform/2, st the perturbation is fully grown at tform/2)

tsteady - time at which the bar is fully grown / bar period (default: tform/2)

Either provide:

  1. rolr - radius of the Outer Lindblad Resonance for a circular orbit

    chi - fraction R_bar / R_CR (corotation radius of bar)

    alpha - relative bar strength (default: 0.01)

    beta - power law index of rotation curve (to calculate OLR, etc.)

  2. omegab - rotation speed of the bar

    rb - bar radius

    Af - bar strength

OUTPUT:

(none)

HISTORY:

2010-11-24 - Started - Bovy (NYU)
Cos(m phi) disk potential

Generalization of the lopsided and elliptical disk potentials to any m.

class galpy.potential.CosmphiDiskPotential(amp=1.0, phib=0.4363323129985824, p=1.0, phio=0.01, m=1.0, tform=None, tsteady=None, cp=None, sp=None)

Class that implements the disk potential

\[\Phi(R,\phi) = \phi_0\,R^p\,\cos\left(m\,(\phi-\phi_b)\right)\]

This potential can be grown between \(t_{\mathrm{form}}\) and \(t_{\mathrm{form}}+T_{\mathrm{steady}}\) in a similar way as DehnenBarPotential, but times are given directly in galpy time units

__init__(amp=1.0, phib=0.4363323129985824, p=1.0, phio=0.01, m=1.0, tform=None, tsteady=None, cp=None, sp=None)

NAME:

__init__

PURPOSE:

initialize an cosmphi disk potential

phi(R,phi) = phio (R/Ro)^p cos[m(phi-phib)]

INPUT:

amp= amplitude to be applied to the potential (default: 1.), see twophio below

tform= start of growth (to smoothly grow this potential

tsteady= time delay at which the perturbation is fully grown (default: 2.)

m= cos( m * (phi - phib) )

p= power-law index of the phi(R) = (R/Ro)^p part

Either:

  1. phib= angle (in rad; default=25 degree)

    phio= potential perturbation (in terms of phio/vo^2 if vo=1 at Ro=1)

  2. cp, sp= m * phio * cos(m * phib), m * phio * sin(m * phib)

OUTPUT:

(none)

HISTORY:

2011-10-27 - Started - Bovy (IAS)
Elliptical disk potential

Like in Kuijken & Tremaine

class galpy.potential.EllipticalDiskPotential(amp=1.0, phib=0.4363323129985824, p=1.0, twophio=0.01, tform=None, tsteady=None, cp=None, sp=None)

Class that implements the Elliptical disk potential of Kuijken & Tremaine (1994)

\[\Phi(R,\phi) = \phi_0\,R^p\,\cos\left(2\,(\phi-\phi_b)\right)\]

This potential can be grown between \(t_{\mathrm{form}}\) and \(t_{\mathrm{form}}+T_{\mathrm{steady}}\) in a similar way as DehnenBarPotential, but times are given directly in galpy time units

__init__(amp=1.0, phib=0.4363323129985824, p=1.0, twophio=0.01, tform=None, tsteady=None, cp=None, sp=None)

NAME:

__init__

PURPOSE:

initialize an Elliptical disk potential

phi(R,phi) = phio (R/Ro)^p cos[2(phi-phib)]

INPUT:

amp= amplitude to be applied to the potential (default: 1.), see twophio below

tform= start of growth (to smoothly grow this potential

tsteady= time delay at which the perturbation is fully grown (default: 2.)

p= power-law index of the phi(R) = (R/Ro)^p part

Either:

  1. phib= angle (in rad; default=25 degree)

    twophio= potential perturbation (in terms of 2phio/vo^2 if vo=1 at Ro=1)

  2. cp, sp= twophio * cos(2phib), twophio * sin(2phib)

OUTPUT:

(none)

HISTORY:

2011-10-19 - Started - Bovy (IAS)
Lopsided disk potential

Like in Kuijken & Tremaine, but for m=1

class galpy.potential.LopsidedDiskPotential(amp=1.0, phib=0.4363323129985824, p=1.0, phio=0.01, tform=None, tsteady=None, cp=None, sp=None)

Class that implements the disk potential

\[\Phi(R,\phi) = \phi_0\,R^p\,\cos\left(\phi-\phi_b\right)\]

See documentation for CosmphiDiskPotential

Steady-state logarithmic spiral potential
class galpy.potential.SteadyLogSpiralPotential(amp=1.0, omegas=0.65, A=-0.035, alpha=-7.0, m=2, gamma=0.7853981633974483, p=None, tform=None, tsteady=None)

Class that implements a steady-state spiral potential

\[\Phi(R,\phi) = \frac{\mathrm{amp}\times A}{\alpha}\,\cos\left(\alpha\,\ln R - m\,(\phi-\Omega_s\,t-\gamma)\right)\]

Can be grown in a similar way as the DehnenBarPotential, but using \(T_s = 2\pi/\Omega_s\) to normalize \(t_{\mathrm{form}}\) and \(T_{\mathrm{steady}}\).

__init__(amp=1.0, omegas=0.65, A=-0.035, alpha=-7.0, m=2, gamma=0.7853981633974483, p=None, tform=None, tsteady=None)

NAME:

__init__

PURPOSE:

initialize a logarithmic spiral potential

INPUT:

amp - amplitude to be applied to the potential (default: 1., A below)

gamma - angle between sun-GC line and the line connecting the peak of the spiral pattern at the Solar radius (in rad; default=45 degree)

A - force amplitude (alpha*potential-amplitude; default=0.035)

omegas= - pattern speed (default=0.65)

m= number of arms

Either provide:

  1. alpha=
  2. p= pitch angle (rad)

tform - start of spiral growth / spiral period (default: -Infinity)

tsteady - time from tform at which the spiral is fully grown / spiral period (default: 2 periods)

OUTPUT:

(none)

HISTORY:

2011-03-27 - Started - Bovy (NYU)
Transient logarithmic spiral potential
class galpy.potential.TransientLogSpiralPotential(amp=1.0, omegas=0.65, A=-0.035, alpha=-7.0, m=2, gamma=0.7853981633974483, p=None, sigma=1.0, to=0.0)

Class that implements a steady-state spiral potential

\[\Phi(R,\phi) = \frac{\mathrm{amp}(t)}{\alpha}\,\cos\left(\alpha\,\ln R - m\,(\phi-\Omega_s\,t-\gamma)\right)\]

where

\[\mathrm{amp}(t) = \mathrm{amp}\,\times A\,\exp\left(-\frac{[t-t_0]^2}{2\,\sigma^2}\right)\]
__init__(amp=1.0, omegas=0.65, A=-0.035, alpha=-7.0, m=2, gamma=0.7853981633974483, p=None, sigma=1.0, to=0.0)

NAME:

__init__

PURPOSE:

initialize a transient logarithmic spiral potential localized around to

INPUT:

amp - amplitude to be applied to the potential (default: 1., A below)

gamma - angle between sun-GC line and the line connecting the peak of the spiral pattern at the Solar radius (in rad; default=45 degree)

A - force amplitude (alpha*potential-amplitude; default=0.035)

omegas= - pattern speed (default=0.65)

m= number of arms

to= time at which the spiral peaks

sigma= “spiral duration” (sigma in Gaussian amplitude)

Either provide:

  1. alpha=
  2. p= pitch angle (rad)

OUTPUT:

(none)

HISTORY:

2011-03-27 - Started - Bovy (NYU)

1D potentials

General instance routines

Use as Potential-instance.method(...)

galpy.potential.linearPotential.__call__
linearPotential.__call__(x, t=0.0)
NAME:
__call__

PURPOSE:

evaluate the potential

INPUT:

x - position

t= time (optional)

OUTPUT:

Phi(x,t)

HISTORY:

2010-07-12 - Written - Bovy (NYU)
galpy.potential.linearPotential.force
linearPotential.force(x, t=0.0)

NAME:

force

PURPOSE:

evaluate the force

INPUT:

x - position

t= time (optional)

OUTPUT:

F(x,t)

HISTORY:

2010-07-12 - Written - Bovy (NYU)
galpy.potential.linearPotential.plot
linearPotential.plot(t=0.0, min=-15.0, max=15, ns=21, savefilename=None)

NAME:

plot

PURPOSE:

plot the potential

INPUT:

t - time to evaluate the potential at

min - minimum x

max - maximum x

ns - grid in x

savefilename - save to or restore from this savefile (pickle)

OUTPUT:

plot to output device

HISTORY:

2010-07-13 - Written - Bovy (NYU)
General 1D potential routines

Use as method(...)

galpy.potential.evaluatelinearForces
galpy.potential.evaluatelinearForces(x, Pot, t=0.0)

NAME:

evaluatelinearForces

PURPOSE:

evaluate the forces due to a list of potentials

INPUT:

x - evaluate forces at this position

Pot - (list of) linearPotential instance(s)

t - time to evaluate at

OUTPUT:

force(x,t)

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.evaluatelinearPotentials
galpy.potential.evaluatelinearPotentials(x, Pot, t=0.0)

NAME:

evaluatelinearPotentials

PURPOSE:

evaluate the sum of a list of potentials

INPUT:

x - evaluate potentials at this position

Pot - (list of) linearPotential instance(s)

t - time to evaluate at

OUTPUT:

pot(x,t)

HISTORY:

2010-07-13 - Written - Bovy (NYU)
galpy.potential.plotlinearPotentials
galpy.potential.plotlinearPotentials(Pot, t=0.0, min=-15.0, max=15, ns=21, savefilename=None)

NAME:

plotlinearPotentials

PURPOSE:

plot a combination of potentials

INPUT:

t - time to evaluate potential at

min - minimum x

max - maximum x

ns - grid in x

savefilename - save to or restore from this savefile (pickle)

OUTPUT:

plot to output device

HISTORY:

2010-07-13 - Written - Bovy (NYU)
Specific potentials
Vertical Kuijken & Gilmore potential
class galpy.potential.KGPotential(K=1.15, F=0.03, D=1.8, amp=1.0)

Class representing the Kuijken & Gilmore (1989) potential

\[\Phi(x) = \mathrm{amp}\,\left(K\,\left(\sqrt{x^2+D^2}-D\right)+F\,x^2\right)\]
__init__(K=1.15, F=0.03, D=1.8, amp=1.0)

NAME:

__init__

PURPOSE:

Initialize a KGPotential

INPUT:

K= K parameter

F= F parameter

D= D parameter

amp - an overall amplitude

OUTPUT:

instance

HISTORY:

2010-07-12 - Written - Bovy (NYU)

One-dimensional potentials can also be derived from 3D axisymmetric potentials as the vertical potential at a certain Galactocentric radius

galpy.potential.RZToverticalPotential
galpy.potential.RZToverticalPotential(RZPot, R)

NAME:

RZToverticalPotential

PURPOSE:

convert a RZPotential to a vertical potential at a given R

INPUT:

RZPot - RZPotential instance or list of such instances

R - Galactocentric radius at which to evaluate the vertical potential

OUTPUT:

(list of) linearPotential instance(s)

HISTORY:

2010-07-21 - Written - Bovy (NYU)

DF

Two-dimensional, axisymmetric disk distribution functions

Distribution function for orbits in the plane of a galactic disk.

General instance routines
galpy.df.diskdf.__call__
diskdf.__call__(*args, **kwargs)

NAME:

__call__

PURPOSE:

evaluate the distribution function

INPUT:

either an orbit instance, a list of such instances, or E,Lz

  1. Orbit instance or list: a) Orbit instance alone: use vxvv member b) Orbit instance + t: call the Orbit instance (for list, each instance is called at t)
  2. E - energy (/vo^2) L - angular momentun (/ro/vo)
  3. array vxvv [3/4,nt]

KWARGS:

marginalizeVperp - marginalize over perpendicular velocity (only supported with 1a) for single orbits above)

marginalizeVlos - marginalize over line-of-sight velocity (only supported with 1a) for single orbits above)

nsigma= number of sigma to integrate over when marginalizing

+scipy.integrate.quad keywords

OUTPUT:

DF(orbit/E,L)

HISTORY:

2010-07-10 - Written - Bovy (NYU)
galpy.df.diskdf.asymmetricdrift
diskdf.asymmetricdrift(R)

NAME:

asymmetricdrift

PURPOSE:

estimate the asymmetric drift (vc-mean-vphi) from an approximation to the Jeans equation

INPUT:

R - radius at which to calculate the asymmetric drift (/ro)

OUTPUT:

asymmetric drift at R

HISTORY:

2011-04-02 - Written - Bovy (NYU)
galpy.df.diskdf.kurtosisvR
diskdf.kurtosisvR(R, romberg=False, nsigma=None, phi=0.0)

NAME:

kurtosisvR

PURPOSE:

calculate excess kurtosis in vR at R by marginalizing over velocity

INPUT:

R - radius at which to calculate <vR> (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

kurtosisvR

HISTORY:

2011-12-07 - Written - Bovy (NYU)
galpy.df.diskdf.kurtosisvT
diskdf.kurtosisvT(R, romberg=False, nsigma=None, phi=0.0)

NAME:

kurtosisvT

PURPOSE:

calculate excess kurtosis in vT at R by marginalizing over velocity

INPUT:

R - radius at which to calculate <vR> (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

kurtosisvT

HISTORY:

2011-12-07 - Written - Bovy (NYU)
galpy.df.diskdf.meanvR
diskdf.meanvR(R, romberg=False, nsigma=None, phi=0.0)

NAME:

meanvR

PURPOSE:

calculate <vR> at R by marginalizing over velocity

INPUT:

R - radius at which to calculate <vR> (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

<vR> at R

HISTORY:

2011-03-30 - Written - Bovy (NYU)
galpy.df.diskdf.meanvT
diskdf.meanvT(R, romberg=False, nsigma=None, phi=0.0)

NAME:

meanvT

PURPOSE:

calculate <vT> at R by marginalizing over velocity

INPUT:

R - radius at which to calculate <vT> (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

<vT> at R

HISTORY:

2011-03-30 - Written - Bovy (NYU)
galpy.df.diskdf.oortA
diskdf.oortA(R, romberg=False, nsigma=None, phi=0.0)

NAME:

oortA

PURPOSE:

calculate the Oort function A

INPUT:

R - radius at which to calculate A (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

Oort A at R

HISTORY:

2011-04-19 - Written - Bovy (NYU)

BUGS:

could be made more efficient, e.g., surfacemass is calculated multiple times
galpy.df.diskdf.oortB
diskdf.oortB(R, romberg=False, nsigma=None, phi=0.0)

NAME:

oortB

PURPOSE:

calculate the Oort function B

INPUT:

R - radius at which to calculate B (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

Oort B at R

HISTORY:

2011-04-19 - Written - Bovy (NYU)

BUGS:

could be made more efficient, e.g., surfacemass is calculated multiple times
galpy.df.diskdf.oortC
diskdf.oortC(R, romberg=False, nsigma=None, phi=0.0)

NAME:

oortC

PURPOSE:

calculate the Oort function C

INPUT:

R - radius at which to calculate C (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

Oort C at R

HISTORY:

2011-04-19 - Written - Bovy (NYU)

BUGS:

could be made more efficient, e.g., surfacemass is calculated multiple times we know this is zero, but it is calculated anyway (bug or feature?)
galpy.df.diskdf.oortK
diskdf.oortK(R, romberg=False, nsigma=None, phi=0.0)

NAME:

oortK

PURPOSE:

calculate the Oort function K

INPUT:

R - radius at which to calculate K (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

Oort K at R

HISTORY:

2011-04-19 - Written - Bovy (NYU)

BUGS:

could be made more efficient, e.g., surfacemass is calculated multiple times we know this is zero, but it is calculated anyway (bug or feature?)
galpy.df.diskdf.sigma2surfacemass
diskdf.sigma2surfacemass(R, romberg=False, nsigma=None, relative=False)

NAME:

sigma2surfacemass

PURPOSE:

calculate the product sigma_R^2 x surface-mass at R by marginalizing over velocity

INPUT:

R - radius at which to calculate the sigma_R^2 x surfacemass density (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

sigma_R^2 x surface-mass at R

HISTORY:

2010-03-XX - Written - Bovy (NYU)
galpy.df.diskdf.sigma2
diskdf.sigma2(R, romberg=False, nsigma=None, phi=0.0)

NAME:

sigma2

PURPOSE:

calculate sigma_R^2 at R by marginalizing over velocity

INPUT:

R - radius at which to calculate sigma_R^2 density (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

sigma_R^2 at R

HISTORY:

2010-03-XX - Written - Bovy (NYU)
galpy.df.diskdf.sigmaR2
diskdf.sigmaR2(R, romberg=False, nsigma=None, phi=0.0)

NAME:

sigmaR2 (duplicate of sigma2 for consistency)

PURPOSE:

calculate sigma_R^2 at R by marginalizing over velocity

INPUT:

R - radius at which to calculate sigma_R^2 (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

sigma_R^2 at R

HISTORY:

2011-03-30 - Written - Bovy (NYU)
galpy.df.diskdf.sigmaT2
diskdf.sigmaT2(R, romberg=False, nsigma=None, phi=0.0)

NAME:

sigmaT2

PURPOSE:

calculate sigma_T^2 at R by marginalizing over velocity

INPUT:

R - radius at which to calculate sigma_T^2 (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

sigma_T^2 at R

HISTORY:

2011-03-30 - Written - Bovy (NYU)
galpy.df.diskdf.skewvR
diskdf.skewvR(R, romberg=False, nsigma=None, phi=0.0)

NAME:

skewvR

PURPOSE:

calculate skew in vR at R by marginalizing over velocity

INPUT:

R - radius at which to calculate <vR> (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

skewvR

HISTORY:

2011-12-07 - Written - Bovy (NYU)
galpy.df.diskdf.skewvT
diskdf.skewvT(R, romberg=False, nsigma=None, phi=0.0)

NAME:

skewvT

PURPOSE:

calculate skew in vT at R by marginalizing over velocity

INPUT:

R - radius at which to calculate <vR> (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

skewvT

HISTORY:

2011-12-07 - Written - Bovy (NYU)
galpy.df.diskdf.surfacemass
diskdf.surfacemass(R, romberg=False, nsigma=None, relative=False)

NAME:

surfacemass

PURPOSE:

calculate the surface-mass at R by marginalizing over velocity

INPUT:

R - radius at which to calculate the surfacemass density (/ro)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

OUTPUT:

surface mass at R

HISTORY:

2010-03-XX - Written - Bovy (NYU)
galpy.df.diskdf.surfacemassLOS
diskdf.surfacemassLOS(d, l, deg=True, target=True, romberg=False, nsigma=None, relative=None)

NAME:

surfacemassLOS

PURPOSE:

evaluate the surface mass along the LOS given l and d

INPUT:

d - distance along the line of sight

l - Galactic longitude (in deg, unless deg=False)

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

target= if True, use target surfacemass (default)

romberg - if True, use a romberg integrator (default: False)

deg= if False, l is in radians

OUTPUT:

Sigma(d,l)

HISTORY:

2011-03-24 - Written - Bovy (NYU)
galpy.df.diskdf.targetSigma2
diskdf.targetSigma2(R, log=False)

NAME:

targetSigma2

PURPOSE:

evaluate the target Sigma_R^2(R)

INPUT:

R - radius at which to evaluate (/ro)

OUTPUT:

target Sigma_R^2(R)

log - if True, return the log (default: False)

HISTORY:

2010-03-28 - Written - Bovy (NYU)
galpy.df.diskdf.targetSurfacemass
diskdf.targetSurfacemass(R, log=False)

NAME:

targetSurfacemass

PURPOSE:

evaluate the target surface mass at R

INPUT:

R - radius at which to evaluate

log - if True, return the log (default: False)

OUTPUT:

Sigma(R)

HISTORY:

2010-03-28 - Written - Bovy (NYU)
galpy.df.diskdf.targetSurfacemassLOS
diskdf.targetSurfacemassLOS(d, l, log=False, deg=True)

NAME:

targetSurfacemassLOS

PURPOSE:

evaluate the target surface mass along the LOS given l and d

INPUT:

d - distance along the line of sight

l - Galactic longitude (in deg, unless deg=False)

deg= if False, l is in radians

log - if True, return the log (default: False)

OUTPUT:

Sigma(d,l)

HISTORY:

2011-03-23 - Written - Bovy (NYU)
galpy.df.diskdf.vmomentsurfacemass
diskdf.vmomentsurfacemass(R, n, m, romberg=False, nsigma=None, relative=False, phi=0.0, deriv=None)

NAME:

vmomentsurfacemass

PURPOSE:

calculate the an arbitrary moment of the velocity distribution at R times the surfacmass

INPUT:

R - radius at which to calculate the moment(/ro)

n - vR^n

m - vT^m

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

KEYWORDS:

romberg - if True, use a romberg integrator (default: False)

deriv= None, ‘R’, or ‘phi’: calculates derivative of the moment wrt R or phi

OUTPUT:

<vR^n vT^m x surface-mass> at R

HISTORY:

2011-03-30 - Written - Bovy (NYU)
Sampling routines
galpy.df.diskdf.sample
diskdf.sample(n=1, rrange=None, returnROrbit=True, returnOrbit=False, nphi=1.0, los=None, losdeg=True, nsigma=None, maxd=None, target=True)

NAME:

sample

PURPOSE:

sample n*nphi points from this DF

INPUT:

n - number of desired sample (specifying this rather than calling this routine n times is more efficient)

rrange - if you only want samples in this rrange, set this keyword (only works when asking for an (RZ)Orbit

returnROrbit - if True, return a planarROrbit instance:
[R,vR,vT] (default)

returnOrbit - if True, return a planarOrbit instance (including phi)

nphi - number of azimuths to sample for each E,L

los= line of sight sampling along this line of sight

losdeg= los in degrees? (default=True)

target= if True, use target surface mass and sigma2 profiles (default=True)

nsigma= number of sigma to rejection-sample on

maxd= maximum distance to consider (for the rejection sampling)

OUTPUT:

n*nphi list of [[E,Lz],...] or list of planar(R)Orbits

CAUTION: lists of EL need to be post-processed to account for the
kappa/omega_R discrepancy

HISTORY:

2010-07-10 - Started - Bovy (NYU)
galpy.df.diskdf.sampledSurfacemassLOS
diskdf.sampledSurfacemassLOS(l, n=1, maxd=None, target=True)

NAME:

sampledSurfacemassLOS

PURPOSE:

sample a distance along the line of sight

INPUT:

l - Galactic longitude (in rad)

n= number of distances to sample

maxd= maximum distance to consider (for the rejection sampling)

target= if True, sample from the ‘target’ surface mass density, rather than the actual surface mass density (default=True)

OUTPUT:

list of samples

HISTORY:

2011-03-24 - Written - Bovy (NYU)
hhgalpy.df.diskdf.sampleLOS
diskdf.sampleLOS(los, n=1, deg=True, maxd=None, nsigma=None, targetSurfmass=True, targetSigma2=True)

NAME:

sampleLOS

PURPOSE:

sample along a given LOS

INPUT:

los - line of sight (in deg, unless deg=False)

n= number of desired samples

deg= los in degrees? (default=True)

targetSurfmass, targetSigma2= if True, use target surface mass and sigma2 profiles, respectively (there is not much point to doing the latter)
(default=True)

OUTPUT:

returns list of Orbits
BUGS:
target=False uses target distribution for derivatives (this is a detail)

HISTORY:

2011-03-24 - Started - Bovy (NYU)
galpy.df.diskdf.sampleVRVT
diskdf.sampleVRVT(R, n=1, nsigma=None, target=True)

NAME:

sampleVRVT

PURPOSE:

sample a radial and azimuthal velocity at R

INPUT:

R - Galactocentric distance

n= number of distances to sample

nsigma= number of sigma to rejection-sample on

target= if True, sample using the ‘target’ sigma_R rather than the actual sigma_R (default=True)

OUTPUT:

list of samples

BUGS:

should use the fact that vR and vT separate

HISTORY:

2011-03-24 - Written - Bovy (NYU)
Specific distribution functions
Dehnen DF
class galpy.df.dehnendf(surfaceSigma=<class galpy.df_src.surfaceSigmaProfile.expSurfaceSigmaProfile at 0x7fd7d62471f0>, profileParams=(0.3333333333333333, 1.0, 0.2), correct=False, beta=0.0, **kwargs)

Dehnen’s ‘new’ df

__init__(surfaceSigma=<class galpy.df_src.surfaceSigmaProfile.expSurfaceSigmaProfile at 0x7fd7d62471f0>, profileParams=(0.3333333333333333, 1.0, 0.2), correct=False, beta=0.0, **kwargs)
NAME:
__init__
PURPOSE:
Initialize a Dehnen ‘new’ DF
INPUT:
surfaceSigma - instance or class name of the target
surface density and sigma_R profile (default: both exponential)
profileParams - parameters of the surface and sigma_R profile:

(xD,xS,Sro) where

xD - disk surface mass scalelength / Ro

xS - disk velocity dispersion scalelength / Ro

Sro - disk velocity dispersion at Ro (/vo)

Directly given to the ‘surfaceSigmaProfile class, so could be anything that class takes

beta - power-law index of the rotation curve

correct - if True, correct the DF

+DFcorrection kwargs (except for those already specified)

OUTPUT:

instance

HISTORY:

2010-03-10 - Written - Bovy (NYU)
Shu DF
class galpy.df.shudf(surfaceSigma=<class galpy.df_src.surfaceSigmaProfile.expSurfaceSigmaProfile at 0x7fd7d62471f0>, profileParams=(0.3333333333333333, 1.0, 0.2), correct=False, beta=0.0, **kwargs)

Shu’s df (1969)

__init__(surfaceSigma=<class galpy.df_src.surfaceSigmaProfile.expSurfaceSigmaProfile at 0x7fd7d62471f0>, profileParams=(0.3333333333333333, 1.0, 0.2), correct=False, beta=0.0, **kwargs)
NAME:
__init__
PURPOSE:
Initialize a Shu DF
INPUT:
surfaceSigma - instance or class name of the target
surface density and sigma_R profile (default: both exponential)
profileParams - parameters of the surface and sigma_R profile:

(xD,xS,Sro) where

xD - disk surface mass scalelength / Ro

xS - disk velocity dispersion scalelength / Ro

Sro - disk velocity dispersion at Ro (/vo)

Directly given to the ‘surfaceSigmaProfile class, so could be anything that class takes

beta - power-law index of the rotation curve

correct - if True, correct the DF

+DFcorrection kwargs (except for those already specified)

OUTPUT:

instance

HISTORY:

2010-05-09 - Written - Bovy (NYU)

Two-dimensional, non-axisymmetric disk distribution functions

Distribution function for orbits in the plane of a galactic disk in non-axisymmetric potentials. These are calculated using the technique of Dehnen 2000, where the DF at the current time is obtained as the evolution of an initially-axisymmetric DF at time to in the non-axisymmetric potential until the current time.

General instance routines
galpy.df.evolveddiskdf.__call__
evolveddiskdf.__call__(*args, **kwargs)

NAME:

__call__

PURPOSE:

evaluate the distribution function

INPUT:

Orbit instance:

  1. Orbit instance alone: use initial state and t=0

  2. Orbit instance + t: Orbit instance NOT called (i.e., Orbit’s initial condition is used, call Orbit yourself)

    If t is a list of t, DF is returned for each t, times must be in descending order and equally spaced (does not work with marginalize...)

marginalizeVperp - marginalize over perpendicular velocity (only supported with 1a) above) + nsigma, +scipy.integrate.quad keywords

marginalizeVlos - marginalize over line-of-sight velocity (only supported with 1a) above) + nsigma, +scipy.integrate.quad keywords

log= if True, return the log (not for deriv, bc that can be negative)

integrate_method= method argument of orbit.integrate

deriv= None, ‘R’, or ‘phi’: calculates derivative of the moment wrt R or phi not with the marginalize options

OUTPUT:

DF(orbit,t)

HISTORY:

2011-03-30 - Written - Bovy (NYU)

2011-04-15 - Added list of times option - Bovy (NYU)

The DF of a two-dimensional, non-axisymmetric disk
class galpy.df.evolveddiskdf(initdf, pot, to=0.0)

Class that represents a diskdf as initial DF + subsequent secular evolution

__init__(initdf, pot, to=0.0)

NAME:

__init__

PURPOSE:

initialize

INPUT:

initdf - the df at the start of the evolution (at to)

pot - potential to integrate orbits in

to= initial time (time at which initdf is evaluated; orbits are integrated from current t back to to)

OUTPUT:

instance

HISTORY:

2011-03-30 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.meanvR
evolveddiskdf.meanvR(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrid=False, surfacemass=None, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

meanvR

PURPOSE:

calculate the mean vR of the velocity distribution at (R,phi)

INPUT:

R - radius at which to calculate the moment(/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

surfacemass= if set use this pre-calculated surfacemass

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF)

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid object (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

mean vR

HISTORY:

2011-03-31 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.meanvT
evolveddiskdf.meanvT(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrid=False, surfacemass=None, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

meanvT

PURPOSE:

calculate the mean vT of the velocity distribution at (R,phi)

INPUT:

R - radius at which to calculate the moment(/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

surfacemass= if set use this pre-calculated surfacemass

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF)

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid object (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

mean vT

HISTORY:

2011-03-31 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.oortA
evolveddiskdf.oortA(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrids=False, derivRGrid=None, derivphiGrid=None, derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

oortA

PURPOSE:

calculate the Oort function A at (R,phi,t)

INPUT:

R - radius at which to calculate A (/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluate integrals of the derivatives of the DF;if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

derivGridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid objects (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

derivHierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

Oort A at R,phi,t

HISTORY:

2011-10-16 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.oortB
evolveddiskdf.oortB(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrids=False, derivRGrid=None, derivphiGrid=None, derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

oortB

PURPOSE:

calculate the Oort function B at (R,phi,t)

INPUT:

R - radius at which to calculate B (/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluat integrals of the derivatives of the DF: if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

derivGridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid objects (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

derivHierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

Oort B at R,phi,t

HISTORY:

2011-10-16 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.oortC
evolveddiskdf.oortC(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrids=False, derivRGrid=None, derivphiGrid=None, derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

oortC

PURPOSE:

calculate the Oort function C at (R,phi,t)

INPUT:

R - radius at which to calculate C (/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluate integrals of the derivatives of the DF; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

derivGridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid objects (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

derivHierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

Oort C at R,phi,t

HISTORY:

2011-10-16 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.oortK
evolveddiskdf.oortK(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrids=False, derivRGrid=None, derivphiGrid=None, derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

oortK

PURPOSE:

calculate the Oort function K at (R,phi,t)

INPUT:

R - radius at which to calculate K (/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluate integrals of the derivatives of the DF; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

derivGridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid objects (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

derivHierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

Oort K at R,phi,t

HISTORY:

2011-10-16 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.sigmaR2
evolveddiskdf.sigmaR2(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrid=False, surfacemass=None, meanvR=None, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

sigmaR2

PURPOSE:

calculate the radial variance of the velocity distribution at (R,phi)

INPUT:

R - radius at which to calculate the moment(/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

surfacemass, meanvR= if set use this pre-calculated surfacemass and mean vR

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF)

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid object (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

variance of vR

HISTORY:

2011-03-31 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.sigmaRT
evolveddiskdf.sigmaRT(R, t=0.0, nsigma=None, deg=False, epsrel=0.01, epsabs=1e-05, phi=0.0, grid=None, gridpoints=101, returnGrid=False, surfacemass=None, meanvR=None, meanvT=None, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

sigmaRT

PURPOSE:

calculate the radial-tangential co-variance of the velocity distribution at (R,phi)

INPUT:

R - radius at which to calculate the moment(/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

surfacemass, meanvR, meavT= if set use this pre-calculated surfacemass and mean vR and vT

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords (the integration calculates the ration of this vmoment to that of the initial DF)

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid object (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

covariance of vR and vT

HISTORY:

2011-03-31 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.sigmaT2
evolveddiskdf.sigmaT2(R, t=0.0, nsigma=None, deg=False, phi=0.0, epsrel=0.01, epsabs=1e-05, grid=None, gridpoints=101, returnGrid=False, surfacemass=None, meanvT=None, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

sigmaT2

PURPOSE:

calculate the tangential variance of the velocity distribution at (R,phi)

INPUT:

R - radius at which to calculate the moment(/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

surfacemass, meanvT= if set use this pre-calculated surfacemass and mean tangential velocity

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF)

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid object (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

variance of vT

HISTORY:

2011-03-31 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.vertexdev
evolveddiskdf.vertexdev(R, t=0.0, nsigma=None, deg=False, epsrel=0.01, epsabs=1e-05, phi=0.0, grid=None, gridpoints=101, returnGrid=False, sigmaR2=None, sigmaT2=None, sigmaRT=None, surfacemass=None, hierarchgrid=False, nlevels=2, integrate_method='dopr54_c')

NAME:

vertexdev

PURPOSE:

calculate the vertex deviation of the velocity distribution at (R,phi)

INPUT:

R - radius at which to calculate the moment(/ro)

phi= azimuth (rad unless deg=True)

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

sigmaR2, sigmaT2, sigmaRT= if set the vertex deviation is simply calculated using these

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF)

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid

gridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid object (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

integrate_method= orbit.integrate method argument

OUTPUT:

vertex deviation in degree

HISTORY:

2011-03-31 - Written - Bovy (NYU)
galpy.df.evolveddiskdf.vmomentsurfacemass
evolveddiskdf.vmomentsurfacemass(R, n, m, t=0.0, nsigma=None, deg=False, epsrel=0.01, epsabs=1e-05, phi=0.0, grid=None, gridpoints=101, returnGrid=False, hierarchgrid=False, nlevels=2, print_progress=False, integrate_method='dopr54_c', deriv=None)

NAME:

vmomentsurfacemass

PURPOSE:

calculate the an arbitrary moment of the velocity distribution at (R,phi) times the surfacmass

INPUT:

R - radius at which to calculate the moment(/ro)

phi= azimuth (rad unless deg=True)

n - vR^n

m - vT^m

t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced)

nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous, but not too generous)

deg= azimuth is in degree (default=False)

epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF)

grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid; if this was created for a list of times, moments are calculated for each time

gridpoints= number of points to use for the grid in 1D (default=101)

returnGrid= if True, return the grid object (default=False)

hierarchgrid= if True, use a hierarchical grid (default=False)

nlevels= number of hierarchical levels for the hierarchical grid

print_progress= if True, print progress updates

integrate_method= orbit.integrate method argument

deriv= None, ‘R’, or ‘phi’: calculates derivative of the moment wrt R or phi onnly with grid options

OUTPUT:

<vR^n vT^m x surface-mass> at R,phi

COMMENT:

grid-based calculation is the only one that is heavily tested (although the test suite also tests the direct calculation)

HISTORY:

2011-03-30 - Written - Bovy (NYU)

Three-dimensional disk distribution functions

Distribution functions for orbits in galactic disks, including the vertical motion for stars reaching large heights above the plane. Currently only the quasi-isothermal DF.

General instance routines
galpy.df.quasiisothermaldf.__call__
quasiisothermaldf.__call__(*args, **kwargs)
NAME:
__call__
PURPOSE:
return the DF
INPUT:
Either:
a)(jr,lz,jz) tuple
where:
jr - radial action lz - z-component of angular momentum jz - vertical action
  1. R,vR,vT,z,vz
  2. Orbit instance: initial condition used if that’s it, orbit(t) if there is a time given as well

log= if True, return the natural log

+scipy.integrate.quadrature kwargs

func= function of (jr,lz,jz) to multiply f with (useful for moments)

OUTPUT:
value of DF
HISTORY:
2012-07-25 - Written - Bovy (IAS@MPIA)
NOTE:

For Miyamoto-Nagai/adiabatic approximation this seems to take about 30 ms / evaluation in the extended Solar neighborhood For a MWPotential/adiabatic approximation this takes about 50 ms / evaluation in the extended Solar neighborhood

For adiabatic-approximation grid this seems to take about 0.67 to 0.75 ms / evaluation in the extended Solar neighborhood (includes some out of the grid)

up to 200x faster when called with vector R,vR,vT,z,vz

galpy.df.quasiisothermaldf.density
quasiisothermaldf.density(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
density
PURPOSE:
calculate the density at R,z by marginalizing over velocity

INPUT:

R - radius at which to calculate the density

z - height at which to calculate the density

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
density at (R,z)
HISTORY:
2012-07-26 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.estimate_hr
quasiisothermaldf.estimate_hr(R, z=0.0, dR=1e-08, **kwargs)
NAME:
estimate_hr
PURPOSE:
estimate the exponential scale length at R
INPUT:

R - Galactocentric radius

z= height (default: 0 pc)

dR- range in R to use

density kwargs

OUTPUT:
estimated hR
HISTORY:
2012-09-11 - Written - Bovy (IAS) 2013-01-28 - Re-written - Bovy
galpy.df.quasiisothermaldf.estimate_hsr
quasiisothermaldf.estimate_hsr(R, z=0.0, dR=1e-08, **kwargs)
NAME:
estimate_hsr
PURPOSE:
estimate the exponential scale length of the radial dispersion at R
INPUT:

R - Galactocentric radius

z= height (default: 0 pc)

dR- range in R to use

density kwargs

OUTPUT:
estimated hsR
HISTORY:
2013-03-08 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.estimate_hsz
quasiisothermaldf.estimate_hsz(R, z=0.0, dR=1e-08, **kwargs)
NAME:
estimate_hsz
PURPOSE:
estimate the exponential scale length of the vertical dispersion at R
INPUT:

R - Galactocentric radius

z= height (default: 0 pc)

dR- range in R to use

density kwargs

OUTPUT:
estimated hsz
HISTORY:
2013-03-08 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.estimate_hz
quasiisothermaldf.estimate_hz(R, z, dz=1e-08, **kwargs)
NAME:
estimate_hz
PURPOSE:
estimate the exponential scale height at R
INPUT:

R - Galactocentric radius

dz - z range to use

density kwargs

OUTPUT:
estimated hz
HISTORY:

2012-08-30 - Written - Bovy (IAS)

2013-01-28 - Re-written - Bovy

galpy.df.quasiisothermaldf.jmomentdensity
quasiisothermaldf.jmomentdensity(R, z, n, m, o, nsigma=None, mc=True, nmc=10000, _returnmc=False, _vrs=None, _vts=None, _vzs=None, **kwargs)
NAME:
jmomentdensity
PURPOSE:
calculate the an arbitrary moment of an action of the velocity distribution at R times the surfacmass
INPUT:

R - radius at which to calculate the moment(/ro)

n - jr^n

m - lz^m

o - jz^o

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over (when doing explicit numerical integral)

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

OUTPUT:
<jr^n lz^m jz^o x density> at R
HISTORY:
2012-08-09 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.meanjr
quasiisothermaldf.meanjr(R, z, nsigma=None, mc=True, nmc=10000, **kwargs)
NAME:
meanjr
PURPOSE:
calculate the mean radial action by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

OUTPUT:
meanjr
HISTORY:
2012-08-09 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.meanjz
quasiisothermaldf.meanjz(R, z, nsigma=None, mc=True, nmc=10000, **kwargs)
NAME:
meanjz
PURPOSE:
calculate the mean vertical action by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

OUTPUT:
meanjz
HISTORY:
2012-08-09 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.meanlz
quasiisothermaldf.meanlz(R, z, nsigma=None, mc=True, nmc=10000, **kwargs)
NAME:
meanlz
PURPOSE:
calculate the mean angular momemtum by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

OUTPUT:
meanlz
HISTORY:
2012-08-09 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.meanvR
quasiisothermaldf.meanvR(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
meanvR
PURPOSE:
calculate the mean radial velocity by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
meanvR
HISTORY:
2012-12-23 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.meanvT
quasiisothermaldf.meanvT(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)

NAME:

meanvT

PURPOSE:

calculate the mean rotational velocity by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
meanvT
HISTORY:
2012-07-30 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.meanvz
quasiisothermaldf.meanvz(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
meanvz
PURPOSE:
calculate the mean vertical velocity by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
meanvz
HISTORY:
2012-12-23 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.pvR
quasiisothermaldf.pvR(vR, R, z, gl=True, ngl=20)
NAME:
pvR
PURPOSE:
calculate the marginalized vR probability at this location (NOT normalized by the density)

INPUT:

vR - radial velocity (/vo)

R - radius (/ro)

z - height (/ro)

gl - use Gauss-Legendre integration (True, currently the only option)

ngl - order of Gauss-Legendre integration

OUTPUT:
p(vR,R,z)
HISTORY:
2012-12-22 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.pvRvT
quasiisothermaldf.pvRvT(vR, vT, R, z, gl=True, ngl=20)
NAME:
pvRvT
PURPOSE:
calculate the marginalized (vR,vT) probability at this location (NOT normalized by the density)

INPUT:

vR - radial velocity (/vo)

vT - tangential velocity (/vo)

R - radius (/ro)

z - height (/ro)

gl - use Gauss-Legendre integration (True, currently the only option)

ngl - order of Gauss-Legendre integration

OUTPUT:
p(vR,vT,R,z)
HISTORY:
2013-01-02 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.pvRvz
quasiisothermaldf.pvRvz(vR, vz, R, z, gl=True, ngl=20)
NAME:
pvR
PURPOSE:
calculate the marginalized (vR,vz) probability at this location (NOT normalized by the density)

INPUT:

vR - radial velocity (/vo)

vz - vertical velocity (/vo)

R - radius (/ro)

z - height (/ro)

gl - use Gauss-Legendre integration (True, currently the only option)

ngl - order of Gauss-Legendre integration

OUTPUT:
p(vR,vz,R,z)
HISTORY:
2013-01-02 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.pvT
quasiisothermaldf.pvT(vT, R, z, gl=True, ngl=20)
NAME:
pvT
PURPOSE:
calculate the marginalized vT probability at this location (NOT normalized by the density)

INPUT:

vT - tangential velocity (/vo)

R - radius (/ro)

z - height (/ro)

gl - use Gauss-Legendre integration (True, currently the only option)

ngl - order of Gauss-Legendre integration

OUTPUT:
p(vT,R,z)
HISTORY:
2012-12-22 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.pvTvz
quasiisothermaldf.pvTvz(vT, vz, R, z, gl=True, ngl=20)
NAME:
pvTvz
PURPOSE:
calculate the marginalized (vT,vz) probability at this location (NOT normalized by the density)

INPUT:

vT - tangential velocity (/vo)

vz - vertical velocity (/vo)

R - radius (/ro)

z - height (/ro)

gl - use Gauss-Legendre integration (True, currently the only option)

ngl - order of Gauss-Legendre integration

OUTPUT:
p(vT,vz,R,z)
HISTORY:
2012-12-22 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.pvz
quasiisothermaldf.pvz(vz, R, z, gl=True, ngl=20, _return_actions=False, _jr=None, _lz=None, _jz=None, _return_freqs=False, _rg=None, _kappa=None, _nu=None, _Omega=None, _sigmaR1=None)
NAME:
pvz
PURPOSE:
calculate the marginalized vz probability at this location (NOT normalized by the density)
INPUT:

vz - vertical velocity (/vo)

R - radius (/ro)

z - height (/ro)

gl - use Gauss-Legendre integration (True, currently the only option)

ngl - order of Gauss-Legendre integration

OUTPUT:
p(vz,R,z)
HISTORY:
2012-12-22 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.sampleV
quasiisothermaldf.sampleV(R, z, n=1)
NAME:
sampleV
PURPOSE:
sample a radial, azimuthal, and vertical velocity at R,z

INPUT:

R - Galactocentric distance

z - height

n= number of distances to sample

OUTPUT:
list of samples
HISTORY:
2012-12-17 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.sigmaR2
quasiisothermaldf.sigmaR2(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
sigmaR2
PURPOSE:
calculate sigma_R^2 by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
sigma_R^2
HISTORY:
2012-07-30 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.sigmaRz
quasiisothermaldf.sigmaRz(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
sigmaRz
PURPOSE:
calculate sigma_RZ^2 by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
sigma_Rz^2
HISTORY:
2012-07-30 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.sigmaT2
quasiisothermaldf.sigmaT2(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
sigmaT2
PURPOSE:
calculate sigma_T^2 by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
sigma_T^2
HISTORY:
2012-07-30 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.sigmaz2
quasiisothermaldf.sigmaz2(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
sigmaz2
PURPOSE:
calculate sigma_z^2 by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
sigma_z^2
HISTORY:
2012-07-30 - Written - Bovy (IAS@MPIA)
galpy.df.quasiisothermaldf.surfacemass_z
quasiisothermaldf.surfacemass_z(R, nz=7, zmax=1.0, fixed_quad=True, fixed_order=8, **kwargs)
NAME:
surfacemass_z
PURPOSE:
calculate the vertically-integrated surface density
INPUT:

R - Galactocentric radius

fixed_quad= if True (default), use Gauss-Legendre integration

fixed_order= (20), order of GL integration to use

nz= number of zs to use to estimate

zmax=m minimum z to use

density kwargs

OUTPUT:
Sigma(R)
HISTORY:
2012-08-30 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.tilt
quasiisothermaldf.tilt(R, z, nsigma=None, mc=False, nmc=10000, gl=True, ngl=10, **kwargs)
NAME:
tilt
PURPOSE:
calculate the tilt of the velocity ellipsoid by marginalizing over velocity

INPUT:

R - radius at which to calculate this

z - height at which to calculate this

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over

scipy.integrate.tplquad kwargs epsabs and epsrel

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= if True, calculate using Gauss-Legendre integration

ngl= if gl, use ngl-th order Gauss-Legendre integration for each dimension

OUTPUT:
tilt in degree
HISTORY:
2012-12-23 - Written - Bovy (IAS)
galpy.df.quasiisothermaldf.vmomentdensity
quasiisothermaldf.vmomentdensity(R, z, n, m, o, nsigma=None, mc=False, nmc=10000, _returnmc=False, _vrs=None, _vts=None, _vzs=None, _rawgausssamples=False, gl=False, ngl=10, _returngl=False, _glqeval=None, _return_actions=False, _jr=None, _lz=None, _jz=None, _return_freqs=False, _rg=None, _kappa=None, _nu=None, _Omega=None, _sigmaR1=None, _sigmaz1=None, **kwargs)
NAME:
vmomentdensity
PURPOSE:
calculate the an arbitrary moment of the velocity distribution at R times the density
INPUT:

R - radius at which to calculate the moment(/ro)

n - vR^n

m - vT^m

o - vz^o

OPTIONAL INPUT:

nsigma - number of sigma to integrate the velocities over (when doing explicit numerical integral)

mc= if True, calculate using Monte Carlo integration

nmc= if mc, use nmc samples

gl= use Gauss-Legendre

_returngl= if True, return the evaluated DF

_return_actions= if True, return the evaluated actions (does not work with _returngl currently)

_return_freqs= if True, return the evaluated frequencies and rg (does not work with _returngl currently)

OUTPUT:
<vR^n vT^m x density> at R,z
HISTORY:
2012-08-06 - Written - Bovy (IAS@MPIA)
Specific distribution functions
Quasi-isothermal DF
class galpy.df.quasiisothermaldf(hr, sr, sz, hsr, hsz, pot=None, aA=None, cutcounter=False, _precomputerg=True, _precomputergrmax=None, _precomputergnLz=51, ro=1.0, lo=0.005681818181818182)

Class that represents a ‘Binney’ quasi-isothermal DF

__init__(hr, sr, sz, hsr, hsz, pot=None, aA=None, cutcounter=False, _precomputerg=True, _precomputergrmax=None, _precomputergnLz=51, ro=1.0, lo=0.005681818181818182)

NAME:

__init__

PURPOSE:

Initialize a quasi-isothermal DF

INPUT:

hr - radial scale length

sr - radial velocity dispersion at the solar radius

sz - vertical velocity dispersion at the solar radius

hsr - radial-velocity-dispersion scale length

hsz - vertial-velocity-dispersion scale length

pot= Potential instance or list thereof

aA= actionAngle instance used to convert (x,v) to actions

cutcounter= if True, set counter-rotating stars’ DF to zero

ro= reference radius for surface mass and sigmas

lo= reference angular momentum below where there are significant numbers of retrograde stars

OTHER INPUTS:

_precomputerg= if True (default), pre-compute the rL(L)

_precomputergrmax= if set, this is the maximum R for which to pre-compute rg (default: 5*hr)

_precomputergnLz if set, number of Lz to pre-compute rg for (default: 51)

OUTPUT:

object

HISTORY:

2012-07-25 - Started - Bovy (IAS@MPIA)

The distribution function of a tidal stream

From Bovy 2014; see Dynamical modeling of tidal streams.

General instance routines
galpy.df.streamdf.__call__
streamdf.__call__(*args, **kwargs)

NAME:

__call__

PURPOSE:

evaluate the DF

INPUT:

Either:

  1. R,vR,vT,z,vz,phi ndarray [nobjects]
  2. (Omegar,Omegaphi,Omegaz,angler,anglephi,anglez) tuple if aAInput

where:

Omegar - radial frequency

Omegaphi - azimuthal frequency

Omegaz - vertical frequency

angler - radial angle

anglephi - azimuthal angle

anglez - vertical angle

  1. Orbit instance or list thereof

log= if True, return the natural log

aaInput= (False) if True, option b above

OUTPUT:

value of DF

HISTORY:

2013-12-03 - Written - Bovy (IAS)
The stream DF
class galpy.df.streamdf(sigv, progenitor=None, pot=None, aA=None, tdisrupt=None, sigMeanOffset=6.0, leading=True, sigangle=None, deltaAngleTrack=None, nTrackChunks=None, nTrackIterations=None, Vnorm=220.0, Rnorm=8.0, R0=8.0, Zsun=0.025, vsun=[-11.1, 241.92, 7.25], multi=None, interpTrack=True, useInterp=True, nosetup=False)

The DF of a tidal stream

__init__(sigv, progenitor=None, pot=None, aA=None, tdisrupt=None, sigMeanOffset=6.0, leading=True, sigangle=None, deltaAngleTrack=None, nTrackChunks=None, nTrackIterations=None, Vnorm=220.0, Rnorm=8.0, R0=8.0, Zsun=0.025, vsun=[-11.1, 241.92, 7.25], multi=None, interpTrack=True, useInterp=True, nosetup=False)

NAME:

__init__

PURPOSE:

Initialize a quasi-isothermal DF

INPUT:

sigv - radial velocity dispersion of the progenitor

tdisrupt= (5 Gyr) time since start of disruption (natural units)

leading= (True) if True, model the leading part of the stream
if False, model the trailing part

progenitor= progenitor orbit as Orbit instance (will be re-integrated, so don’t bother integrating the orbit before)

pot= Potential instance or list thereof

aA= actionAngle instance used to convert (x,v) to actions

sigMeanOffset= (6.) offset between the mean of the frequencies
and the progenitor, in units of the largest eigenvalue of the frequency covariance matrix (along the largest eigenvector), should be positive; to model the trailing part, set leading=False
sigangle= (sigv/122/[1km/s]=1.8sigv in natural coordinates)
estimate of the angle spread of the debris initially

deltaAngleTrack= (None) angle to estimate the stream track over (rad)

nTrackChunks= (floor(deltaAngleTrack/0.15)+1) number of chunks to divide the progenitor track in

nTrackIterations= Number of iterations to perform when establishing the track; each iteration starts from a previous approximation to the track in (x,v) and calculates a new track based on the deviation between the previous track and the desired track in action-angle coordinates; if not set, an appropriate value is determined based on the magnitude of the misalignment between stream and orbit, with larger numbers of iterations for larger misalignments

interpTrack= (might change), interpolate the stream track while
setting up the instance (can be done by hand by calling self._interpolate_stream_track() and self._interpolate_stream_track_aA())
useInterp= (might change), use interpolation by default when
calculating approximated frequencies and angles
nosetup= (False) if True, don’t setup the stream track and anything
else that is expensive

multi= (None) if set, use multi-processing

Coordinate transformation inputs:

Vnorm= (220) circular velocity to normalize velocities with

Rnorm= (8) Galactocentric radius to normalize positions with

R0= (8) Galactocentric radius of the Sun (kpc)

Zsun= (0.025) Sun’s height above the plane (kpc)

vsun= ([-11.1,241.92,7.25]) Sun’s motion in cylindrical coordinates (vR positive away from center)

OUTPUT:

object

HISTORY:

2013-09-16 - Started - Bovy (IAS)

2013-11-25 - Started over - Bovy (IAS)

galpy.df.streamdf.calc_stream_lb
streamdf.calc_stream_lb(Vnorm=None, Rnorm=None, R0=None, Zsun=None, vsun=None)

NAME:

calc_stream_lb

PURPOSE:

convert the stream track to observational coordinates and store

INPUT:

Coordinate transformation inputs (all default to the instance-wide values):

Vnorm= circular velocity to normalize velocities with

Rnorm= Galactocentric radius to normalize positions with

R0= Galactocentric radius of the Sun (kpc)

Zsun= Sun’s height above the plane (kpc)

vsun= Sun’s motion in cylindrical coordinates (vR positive away from center)

OUTPUT:

(none)

HISTORY:

2013-12-02 - Written - Bovy (IAS)
galpy.df.streamdf.callMarg
streamdf.callMarg(xy, **kwargs)

NAME:

callMarg
PURPOSE:
evaluate the DF, marginalizing over some directions, in Galactocentric rectangular coordinates (or in observed l,b,D,vlos,pmll,pmbb) coordinates)

INPUT:

xy - phase-space point [X,Y,Z,vX,vY,vZ]; the distribution of the dimensions set to None is returned

interp= (object-wide interp default) if True, use the interpolated stream track

cindx= index of the closest point on the (interpolated) stream track if not given, determined from the dimensions given

nsigma= (3) number of sigma to marginalize the DF over (approximate sigma)

ngl= (5) order of Gauss-Legendre integration

lb= (False) if True, xy contains [l,b,D,vlos,pmll,pmbb] in [deg,deg,kpc,km/s,mas/yr,mas/yr] and the marginalized PDF in these coordinates is returned

Vnorm= (220) circular velocity to normalize with when lb=True

Rnorm= (8) Galactocentric radius to normalize with when lb=True

R0= (8) Galactocentric radius of the Sun (kpc)

Zsun= (0.025) Sun’s height above the plane (kpc)

vsun= ([-11.1,241.92,7.25]) Sun’s motion in cylindrical coordinates (vR positive away from center)

OUTPUT:

p(xy) marginalized over missing directions in xy

HISTORY:

2013-12-16 - Written - Bovy (IAS)
galpy.df.streamdf.estimateTdisrupt
streamdf.estimateTdisrupt(deltaAngle)

NAME:

estimateTdisrupt

PURPOSE:

estimate the time of disruption

INPUT:

deltaAngle- spread in angle since disruption

OUTPUT:

time in natural units

HISTORY:

2013-11-27 - Written - Bovy (IAS)
galpy.df.streamdf.find_closest_trackpoint
streamdf.find_closest_trackpoint(R, vR, vT, z, vz, phi, interp=True, xy=False, usev=False)

NAME:

find_closest_trackpoint

PURPOSE:

find the closest point on the stream track to a given point

INPUT:

R,vR,vT,z,vz,phi - phase-space coordinates of the given point

interp= (True), if True, return the index of the interpolated track

xy= (False) if True, input is X,Y,Z,vX,vY,vZ in Galactocentric rectangular coordinates; if xy, some coordinates may be missing (given as None) and they will not be used

usev= (False) if True, also use velocities to find the closest point

OUTPUT:

index into the track of the closest track point

HISTORY:

2013-12-04 - Written - Bovy (IAS)
galpy.df.streamdf.find_closest_trackpointLB
streamdf.find_closest_trackpointLB(l, b, D, vlos, pmll, pmbb, interp=True, usev=False)

NAME:

find_closest_trackpointLB
PURPOSE:
find the closest point on the stream track to a given point in (l,b,...) coordinates

INPUT:

l,b,D,vlos,pmll,pmbb- coordinates in (deg,deg,kpc,km/s,mas/yr,mas/yr)

interp= (True) if True, return the closest index on the interpolated track

usev= (False) if True, also use the velocity components (default is to only use the positions)

OUTPUT:

index of closest track point on the interpolated or not-interpolated track

HISTORY:

2013-12-17- Written - Bovy (IAS)
galpy.df.streamdf.freqEigvalRatio
streamdf.freqEigvalRatio(isotropic=False)

NAME:

freqEigvalRatio

PURPOSE:

calculate the ratio between the largest and 2nd-to-largest (in abs) eigenvalue of sqrt(dO/dJ^T V_J dO/dJ) (if this is big, a 1D stream will form)

INPUT:

isotropic= (False), if True, return the ratio assuming an isotropic action distribution (i.e., just of dO/dJ)

OUTPUT:

ratio between eigenvalues of |dO / dJ|

HISTORY:

2013-12-05 - Written - Bovy (IAS)
galpy.df.streamdf.gaussApprox
streamdf.gaussApprox(xy, **kwargs)

NAME:

gaussApprox

PURPOSE:

return the mean and variance of a Gaussian approximation to the stream DF at a given phase-space point in Galactocentric rectangular coordinates (distribution is over missing directions)

INPUT:

xy - phase-space point [X,Y,Z,vX,vY,vZ]; the distribution of the dimensions set to None is returned

interp= (object-wide interp default) if True, use the interpolated stream track

cindx= index of the closest point on the (interpolated) stream track if not given, determined from the dimensions given

lb= (False) if True, xy contains [l,b,D,vlos,pmll,pmbb] in [deg,deg,kpc,km/s,mas/yr,mas/yr] and the Gaussian approximation in these coordinates is returned

OUTPUT:

(mean,variance) of the approximate Gaussian DF for the missing directions in xy

HISTORY:

2013-12-12 - Written - Bovy (IAS)
galpy.df.streamdf.meanangledAngle
streamdf.meanangledAngle(dangle, smallest=False)

NAME:

meanangledAngle

PURPOSE:

calculate the mean perpendicular angle at a given angle

INPUT:

dangle - angle offset along the stream

smallest= (False) calculate for smallest eigenvalue direction rather than for middle

OUTPUT:

mean perpendicular angle

HISTORY:

2013-12-06 - Written - Bovy (IAS)
galpy.df.streamdf.meanOmega
streamdf.meanOmega(dangle, oned=False)

NAME:

meanOmega

PURPOSE:

calculate the mean frequency as a function of angle, assuming a uniform time distribution up to a maximum time

INPUT:

dangle - angle offset

oned= (False) if True, return the 1D offset from the progenitor (along the direction of disruption)

OUTPUT:

mean Omega

HISTORY:

2013-12-01 - Written - Bovy (IAS)
galpy.df.streamdf.meantdAngle
streamdf.meantdAngle(dangle)

NAME:

meantdAngle

PURPOSE:

calculate the mean stripping time at a given angle

INPUT:

dangle - angle offset along the stream

OUTPUT:

mean stripping time at this dangle

HISTORY:

2013-12-05 - Written - Bovy (IAS)
galpy.df.streamdf.misalignment
streamdf.misalignment(isotropic=False)

NAME:

misalignment

PURPOSE:

calculate the misalignment between the progenitor’s frequency and the direction along which the stream disrupts

INPUT:

isotropic= (False), if True, return the misalignment assuming an isotropic action distribution

OUTPUT:

misalignment in degree

HISTORY:

2013-12-05 - Written - Bovy (IAS)
galpy.df.streamdf.pangledAngle
streamdf.pangledAngle(angleperp, dangle, smallest=False)

NAME:

pangledAngle
PURPOSE:
return the probability of a given perpendicular angle at a given angle along the stream

INPUT:

angleperp - perpendicular angle

dangle - angle offset along the stream

smallest= (False) calculate for smallest eigenvalue direction rather than for middle

OUTPUT:

p(angle_perp|dangle)

HISTORY:

2013-12-06 - Written - Bovy (IAS)
galpy.df.streamdf.plotCompareTrackAAModel
streamdf.plotCompareTrackAAModel(**kwargs)

NAME:

plotCompareTrackAAModel

PURPOSE:

plot the comparison between the underlying model’s dOmega_perp vs. dangle_r (line) and the track in (x,v)’s dOmega_perp vs. dangle_r (dots; explicitly calculating the track’s action-angle coordinates)

INPUT:

bovy_plot.bovy_plot kwargs

OUTPUT:

plot

HISTORY:

2014-08-27 - Written - Bovy (IAS)
galpy.df.streamdf.plotProgenitor
streamdf.plotProgenitor(d1='x', d2='z', *args, **kwargs)

NAME:

plotProgenitor

PURPOSE:

plot the progenitor orbit

INPUT:

d1= plot this on the X axis (‘x’,’y’,’z’,’R’,’phi’,’vx’,’vy’,’vz’,’vR’,’vt’,’ll’,’bb’,’dist’,’pmll’,’pmbb’,’vlos’)

d2= plot this on the Y axis (same list as for d1)

scaleToPhysical= (False), if True, plot positions in kpc and velocities in km/s

bovy_plot.bovy_plot args and kwargs

OUTPUT:

plot to output device

HISTORY:

2013-12-09 - Written - Bovy (IAS)
galpy.df.streamdf.plotTrack
streamdf.plotTrack(d1='x', d2='z', interp=True, spread=0, simple=True, *args, **kwargs)

NAME:

plotTrack

PURPOSE:

plot the stream track

INPUT:

d1= plot this on the X axis (‘x’,’y’,’z’,’R’,’phi’,’vx’,’vy’,’vz’,’vR’,’vt’,’ll’,’bb’,’dist’,’pmll’,’pmbb’,’vlos’)

d2= plot this on the Y axis (same list as for d1)

interp= (True) if True, use the interpolated stream track

spread= (0) if int > 0, also plot the spread around the track as spread x sigma

scaleToPhysical= (False), if True, plot positions in kpc and velocities in km/s

simple= (False), if True, use a simple estimate for the spread in perpendicular angle

bovy_plot.bovy_plot args and kwargs

OUTPUT:

plot to output device

HISTORY:

2013-12-09 - Written - Bovy (IAS)
galpy.df.streamdf.ptdAngle
streamdf.ptdAngle(t, dangle)

NAME:

ptdangle

PURPOSE:

return the probability of a given stripping time at a given angle along the stream

INPUT:

t - stripping time

dangle - angle offset along the stream

OUTPUT:

p(td|dangle)

HISTORY:

2013-12-05 - Written - Bovy (IAS)
galpy.df.streamdf.sample
streamdf.sample(n, returnaAdt=False, returndt=False, interp=None, xy=False, lb=False, Vnorm=None, Rnorm=None, R0=None, Zsun=None, vsun=None)

NAME:

sample

PURPOSE:

sample from the DF

INPUT:

n - number of points to return

returnaAdt= (False) if True, return (Omega,angle,dt)

returndT= (False) if True, also return the time since the star was stripped

interp= (object-wide default) use interpolation of the stream track

xy= (False) if True, return Galactocentric rectangular coordinates

lb= (False) if True, return Galactic l,b,d,vlos,pmll,pmbb coordinates

+Coordinate transformation inputs (all default to the instance-wide values):

Vnorm= circular velocity to normalize velocities with

Rnorm= Galactocentric radius to normalize positions with

R0= Galactocentric radius of the Sun (kpc)

Zsun= Sun’s height above the plane (kpc)

vsun= Sun’s motion in cylindrical coordinates (vR positive away from center)

OUTPUT:

(R,vR,vT,z,vz,phi) of points on the stream in 6,N array

HISTORY:

2013-12-22 - Written - Bovy (IAS)
galpy.df.streamdf.sigangledAngle
streamdf.sigangledAngle(dangle, assumeZeroMean=True, smallest=False, simple=False)

NAME:

sigangledAngle

PURPOSE:

calculate the dispersion in the perpendicular angle at a given angle

INPUT:

dangle - angle offset along the stream

assumeZeroMean= (True) if True, assume that the mean is zero (should be)

smallest= (False) calculate for smallest eigenvalue direction rather than for middle

simple= (False), if True, return an even simpler estimate

OUTPUT:

dispersion in the perpendicular angle at this angle

HISTORY:

2013-12-06 - Written - Bovy (IAS)
galpy.df.streamdf.sigOmega
streamdf.sigOmega(dangle)

NAME:

sigmaOmega

PURPOSE:

calculate the 1D sigma in frequency as a function of angle, assuming a uniform time distribution up to a maximum time

INPUT:

dangle - angle offset

OUTPUT:

sigma Omega

HISTORY:

2013-12-05 - Written - Bovy (IAS)
galpy.df.streamdf.sigtdAngle
streamdf.sigtdAngle(dangle)

NAME:

sigtdAngle

PURPOSE:

calculate the dispersion in the stripping times at a given angle

INPUT:

dangle - angle offset along the stream

OUTPUT:

dispersion in the stripping times at this angle

HISTORY:

2013-12-05 - Written - Bovy (IAS)

actionAngle

General instance routines

Not necessarily supported for all different types of actionAngle calculations. These have extra arguments for different actionAngle modules, so check the documentation of the module-specific functions for more info (e.g., ?actionAngleIsochrone.__call__)

galpy.actionAngle.actionAngle.__call__
actionAngle.__call__(*args, **kwargs)
NAME:
__call__
PURPOSE:
evaluate the actions (jr,lz,jz)

INPUT:

Either:

  1. R,vR,vT,z,vz[,phi]:
    1. floats: phase-space value for single object (phi is optional)
    2. numpy.ndarray: [N] phase-space values for N objects
  2. Orbit instance: initial condition used if that’s it, orbit(t) if there is a time given as well as the second argument
OUTPUT:
(jr,lz,jz)
HISTORY:
2014-01-03 - Written for top level - Bovy (IAS)
galpy.actionAngle.actionAngle.actionsFreqs
actionAngle.actionsFreqs(*args, **kwargs)
NAME:
actionsFreqs
PURPOSE:
evaluate the actions and frequencies (jr,lz,jz,Omegar,Omegaphi,Omegaz)

INPUT:

Either:

  1. R,vR,vT,z,vz[,phi]:
    1. floats: phase-space value for single object (phi is optional)
    2. numpy.ndarray: [N] phase-space values for N objects
  2. Orbit instance: initial condition used if that’s it, orbit(t) if there is a time given as well as the second argument
OUTPUT:
(jr,lz,jz,Omegar,Omegaphi,Omegaz)
HISTORY:
2014-01-03 - Written for top level - Bovy (IAS)
galpy.actionAngle.actionAngle.actionsFreqsAngles
actionAngle.actionsFreqsAngles(*args, **kwargs)
NAME:
actionsFreqsAngles
PURPOSE:
evaluate the actions, frequencies, and angles (jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)

INPUT:

Either:

  1. R,vR,vT,z,vz,phi:
    1. floats: phase-space value for single object (phi needs to be specified)
    2. numpy.ndarray: [N] phase-space values for N objects
  2. Orbit instance: initial condition used if that’s it, orbit(t) if there is a time given as well as the second argument
OUTPUT:
(jr,lz,jz,Omegar,Omegaphi,Omegaz,angler,anglephi,anglez)
HISTORY:
2014-01-03 - Written for top level - Bovy (IAS)

Specific actionAngle modules

actionAngleIsochrone
class galpy.actionAngle.actionAngleIsochrone(*args, **kwargs)

Action-angle formalism for the isochrone potential, on the Jphi, Jtheta system of Binney & Tremaine (2008)

__init__(*args, **kwargs)
NAME:
__init__
PURPOSE:
initialize an actionAngleIsochrone object
INPUT:

Either:

b= scale parameter of the isochrone parameter

ip= instance of a IsochronePotential

OUTPUT: HISTORY:

2013-09-08 - Written - Bovy (IAS)
actionAngleSpherical
class galpy.actionAngle.actionAngleSpherical(*args, **kwargs)

Action-angle formalism for spherical potentials

__init__(*args, **kwargs)
NAME:
__init__
PURPOSE:
initialize an actionAngleSpherical object
INPUT:
pot= a Spherical potential

OUTPUT: HISTORY:

2013-12-28 - Written - Bovy (IAS)
actionAngleAdiabatic
class galpy.actionAngle.actionAngleAdiabatic(*args, **kwargs)

Action-angle formalism for axisymmetric potentials using the adiabatic approximation

__init__(*args, **kwargs)
NAME:
__init__
PURPOSE:
initialize an actionAngleAdiabatic object

INPUT:

pot= potential or list of potentials (planarPotentials)

gamma= (default=1.) replace Lz by Lz+gamma Jz in effective potential

OUTPUT: HISTORY:

2012-07-26 - Written - Bovy (IAS@MPIA)
actionAngleAdiabaticGrid
class galpy.actionAngle.actionAngleAdiabaticGrid(pot=None, zmax=1.0, gamma=1.0, Rmax=5.0, nR=16, nEz=16, nEr=31, nLz=31, numcores=1, **kwargs)

Action-angle formalism for axisymmetric potentials using the adiabatic approximation, grid-based interpolation

__init__(pot=None, zmax=1.0, gamma=1.0, Rmax=5.0, nR=16, nEz=16, nEr=31, nLz=31, numcores=1, **kwargs)
NAME:
__init__
PURPOSE:
initialize an actionAngleAdiabaticGrid object

INPUT:

pot= potential or list of potentials

zmax= zmax for building Ez grid

Rmax = Rmax for building grids

gamma= (default=1.) replace Lz by Lz+gamma Jz in effective potential

nEz=, nEr=, nLz, nR= grid size

numcores= number of cpus to use to parallellize

c= if True, use C to calculate actions

+scipy.integrate.quad keywords

OUTPUT: HISTORY:

2012-07-27 - Written - Bovy (IAS@MPIA)
actionAngleStaeckel
class galpy.actionAngle.actionAngleStaeckel(*args, **kwargs)

Action-angle formalism for axisymmetric potentials using Binney (2012)’s Staeckel approximation

__init__(*args, **kwargs)
NAME:
__init__
PURPOSE:
initialize an actionAngleStaeckel object
INPUT:

pot= potential or list of potentials (3D)

delta= focus

useu0 - use u0 to calculate dV (NOT recommended)

c= if True, always use C for calculations

OUTPUT: HISTORY:

2012-11-27 - Written - Bovy (IAS)
actionAngleStaeckelGrid
class galpy.actionAngle.actionAngleStaeckelGrid(pot=None, delta=None, Rmax=5.0, nE=25, npsi=25, nLz=30, numcores=1, **kwargs)

Action-angle formalism for axisymmetric potentials using Binney (2012)’s Staeckel approximation, grid-based interpolation

__init__(pot=None, delta=None, Rmax=5.0, nE=25, npsi=25, nLz=30, numcores=1, **kwargs)
NAME:
__init__
PURPOSE:
initialize an actionAngleStaeckelGrid object
INPUT:

pot= potential or list of potentials

delta= focus of prolate confocal coordinate system

Rmax = Rmax for building grids

nE=, npsi=, nLz= grid size

numcores= number of cpus to use to parallellize

+scipy.integrate.quad keywords

OUTPUT: HISTORY:

2012-11-29 - Written - Bovy (IAS)
actionAngleIsochroneApprox
class galpy.actionAngle.actionAngleIsochroneApprox(*args, **kwargs)

Action-angle formalism using an isochrone potential as an approximate potential and using a Fox & Binney (2014?) like algorithm to calculate the actions using orbit integrations and a torus-machinery-like angle-fit to get the angles and frequencies (Bovy 2014)

__init__(*args, **kwargs)
NAME:
__init__
PURPOSE:
initialize an actionAngleIsochroneApprox object

INPUT:

Either:

b= scale parameter of the isochrone parameter

ip= instance of a IsochronePotential

aAI= instance of an actionAngleIsochrone

pot= potential to calculate action-angle variables for

tintJ= (default: 100) time to integrate orbits for to estimate actions

ntintJ= (default: 10000) number of time-integration points

integrate_method= (default: ‘dopr54_c’) integration method to use

OUTPUT: HISTORY:

2013-09-10 - Written - Bovy (IAS)

Utilities

galpy.util.bovy_plot

Various plotting routines:

galpy.util.bovy_plot.bovy_dens2d
galpy.util.bovy_plot.bovy_dens2d(X, **kwargs)

NAME:

bovy_dens2d

PURPOSE:

plot a 2d density with optional contours

INPUT:

first argument is the density

matplotlib.pyplot.imshow keywords (see http://matplotlib.sourceforge.net/api/axes_api.html#matplotlib.axes.Axes.imshow)

xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

xrange

yrange

noaxes - don’t plot any axes

overplot - if True, overplot

colorbar - if True, add colorbar

shrink= colorbar argument: shrink the colorbar by the factor (optional)

Contours:

justcontours - if True, only draw contours

contours - if True, draw contours (10 by default)

levels - contour-levels

cntrmass - if True, the density is a probability and the levels are probability masses contained within the contour

cntrcolors - colors for contours (single color or array)

cntrlabel - label the contours

cntrlw, cntrls - linewidths and linestyles for contour

cntrlabelsize, cntrlabelcolors,cntrinline - contour arguments

cntrSmooth - use ndimage.gaussian_filter to smooth before contouring

onedhists - if True, make one-d histograms on the sides

onedhistcolor - histogram color

retAxes= return all Axes instances

retCont= return the contour instance

OUTPUT:

plot to output device, Axes instances depending on input

HISTORY:

2010-03-09 - Written - Bovy (NYU)
galpy.util.bovy_plot.bovy_end_print
galpy.util.bovy_plot.bovy_end_print(filename, **kwargs)

NAME:

bovy_end_print

PURPOSE:

saves the current figure(s) to filename

INPUT:

filename - filename for plot (with extension)

OPTIONAL INPUTS:

format - file-format

OUTPUT:

(none)

HISTORY:

2009-12-23 - Written - Bovy (NYU)
galpy.util.bovy_plot.bovy_hist
galpy.util.bovy_plot.bovy_hist(x, xlabel=None, ylabel=None, overplot=False, **kwargs)

NAME:

bovy_hist

PURPOSE:

wrapper around matplotlib’s hist function

INPUT:

x - array to histogram

xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

yrange - set the y-axis range

+all pyplot.hist keywords

OUTPUT:

(from the matplotlib docs: http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.hist)

The return value is a tuple (n, bins, patches) or ([n0, n1, ...], bins, [patches0, patches1,...]) if the input contains multiple data

HISTORY:

2009-12-23 - Written - Bovy (NYU)
galpy.util.bovy_plot.bovy_plot
galpy.util.bovy_plot.bovy_plot(*args, **kwargs)

NAME:

bovy_plot

PURPOSE:

wrapper around matplotlib’s plot function

INPUT:

see http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

xrange

yrange

scatter= if True, use pyplot.scatter and its options etc.

colorbar= if True, and scatter==True, add colorbar

crange - range for colorbar of scatter==True

clabel= label for colorbar

overplot=True does not start a new figure and does not change the ranges and labels

gcf=True does not start a new figure (does change the ranges and labels)

onedhists - if True, make one-d histograms on the sides

onedhistcolor, onedhistfc, onedhistec

onedhistxnormed, onedhistynormed - normed keyword for one-d histograms

onedhistxweights, onedhistyweights - weights keyword for one-d histograms

bins= number of bins for onedhists

semilogx=, semilogy=, loglog= if True, plot logs

OUTPUT:

plot to output device, returns what pyplot.plot returns, or 3 Axes instances if onedhists=True

HISTORY:

2009-12-28 - Written - Bovy (NYU)
galpy.util.bovy_plot.bovy_print
galpy.util.bovy_plot.bovy_print(fig_width=5, fig_height=5, axes_labelsize=16, text_fontsize=11, legend_fontsize=12, xtick_labelsize=10, ytick_labelsize=10, xtick_minor_size=2, ytick_minor_size=2, xtick_major_size=4, ytick_major_size=4)

NAME:

bovy_print

PURPOSE:

setup a figure for plotting

INPUT:

fig_width - width in inches

fig_height - height in inches

axes_labelsize - size of the axis-labels

text_fontsize - font-size of the text (if any)

legend_fontsize - font-size of the legend (if any)

xtick_labelsize - size of the x-axis labels

ytick_labelsize - size of the y-axis labels

xtick_minor_size - size of the minor x-ticks

ytick_minor_size - size of the minor y-ticks

OUTPUT:

(none)

HISTORY:

2009-12-23 - Written - Bovy (NYU)
galpy.util.bovy_plot.bovy_text
galpy.util.bovy_plot.bovy_text(*args, **kwargs)

NAME:

bovy_text

PURPOSE:

thin wrapper around matplotlib’s text and annotate

use keywords:

‘bottom_left=True’

‘bottom_right=True’

‘top_left=True’

‘top_right=True’

‘title=True’

to place the text in one of the corners or use it as the title

INPUT:

OUTPUT:

prints text on the current figure

HISTORY:

2010-01-26 - Written - Bovy (NYU)
galpy.util.bovy_plot.scatterplot
galpy.util.bovy_plot.scatterplot(x, y, *args, **kwargs)

NAME:

scatterplot

PURPOSE:

make a ‘smart’ scatterplot that is a density plot in high-density regions and a regular scatterplot for outliers

INPUT:

x, y

xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

xrange

yrange

bins - number of bins to use in each dimension

weights - data-weights

aspect - aspect ratio

contours - if False, don’t plot contours

cntrcolors - color of contours (can be array as for bovy_dens2d)

cntrlw, cntrls - linewidths and linestyles for contour

cntrSmooth - use ndimage.gaussian_filter to smooth before contouring

levels - contour-levels

onedhists - if True, make one-d histograms on the sides

onedhistx - if True, make one-d histograms on the side of the x distribution

onedhisty - if True, make one-d histograms on the side of the y distribution

onedhistcolor, onedhistfc, onedhistec

onedhistxnormed, onedhistynormed - normed keyword for one-d histograms

onedhistxweights, onedhistyweights - weights keyword for one-d histograms

cmap= cmap for density plot

hist= and edges= - you can supply the histogram of the data yourself, this can be useful if you want to censor the data, both need to be set and calculated using scipy.histogramdd with the given range

retAxes= return all Axes instances

OUTPUT:

plot to output device, Axes instance(s) or not, depending on input

HISTORY:

2010-04-15 - Written - Bovy (NYU)

galpy also contains a new matplotlib projection 'galpolar' that can be used when working with older versions of matplotlib like 'polar' to create a polar plot in which the azimuth increases clockwise (like when looking at the Milky Way from the north Galactic pole). In newer versions of matplotlib, this does not work, but the 'polar' projection now supports clockwise azimuths by doing, e.g.,

>>> ax= pyplot.subplot(111,projection='polar')
>>> ax.set_theta_direction(-1)

galpy.util.bovy_conversion

Utility functions that provide conversions between galpy’s natural units and physical units. These can be used to translate galpy outputs in natural coordinates to physical units by multiplying with the appropriate function.

These could also be used to figure out the conversion between different units. For example, if you want to know how many \(\mathrm{GeV\,cm}^{-3}\) correspond to \(1\,M_\odot\,\mathrm{pc}^{-3}\), you can calculate

>>> from galpy.util import bovy_conversion
>>> bovy_conversion.dens_in_gevcc(1.,1.)/bovy_conversion.dens_in_msolpc3(1.,1.)
37.978342941703616

or \(1\,M_\odot\,\mathrm{pc}^{-3} \approx 40\,\mathrm{GeV\,cm}^{-3}\).

Functions:
galpy.util.bovy_conversion.dens_in_criticaldens
galpy.util.bovy_conversion.dens_in_criticaldens(vo, ro, H=70.0)

NAME:

dens_in_criticaldens

PURPOSE:

convert density to units of the critical density

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

H= (default: 70) Hubble constant in km/s/Mpc

OUTPUT:

conversion from units where vo=1. at ro=1. to units of the critical density

HISTORY:

2014-01-28 - Written - Bovy (IAS)
galpy.util.bovy_conversion.dens_in_gevcc
galpy.util.bovy_conversion.dens_in_gevcc(vo, ro)

NAME:

dens_in_gevcc

PURPOSE:

convert density to GeV / cm^3

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1. to GeV/cm^3

HISTORY:

2014-06-16 - Written - Bovy (IAS)
galpy.util.bovy_conversion.dens_in_meanmatterdens
galpy.util.bovy_conversion.dens_in_meanmatterdens(vo, ro, H=70.0, Om=0.3)

NAME:

dens_in_meanmatterdens

PURPOSE:

convert density to units of the mean matter density

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

H= (default: 70) Hubble constant in km/s/Mpc

Om= (default: 0.3) Omega matter

OUTPUT:

conversion from units where vo=1. at ro=1. to units of the mean matter density

HISTORY:

2014-01-28 - Written - Bovy (IAS)
galpy.util.bovy_conversion.dens_in_msolpc3
galpy.util.bovy_conversion.dens_in_msolpc3(vo, ro)

NAME:

dens_in_msolpc3

PURPOSE:

convert density to Msolar / pc^3

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1. to Msolar/pc^3

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.force_in_2piGmsolpc2
galpy.util.bovy_conversion.force_in_2piGmsolpc2(vo, ro)

NAME:

force_in_2piGmsolpc2

PURPOSE:

convert a force or acceleration to 2piG x Msolar / pc^2

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.force_in_pcMyr2
galpy.util.bovy_conversion.force_in_pcMyr2(vo, ro)

NAME:

force_in_pcMyr2

PURPOSE:

convert a force or acceleration to pc/Myr^2

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.force_in_10m13kms2
galpy.util.bovy_conversion.force_in_10m13kms2(vo, ro)

NAME:

force_in_10m13kms2

PURPOSE:

convert a force or acceleration to 10^(-13) km/s^2

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2014-01-22 - Written - Bovy (IAS)
galpy.util.bovy_conversion.force_in_kmsMyr
galpy.util.bovy_conversion.force_in_kmsMyr(vo, ro)

NAME:

force_in_kmsMyr

PURPOSE:

convert a force or acceleration to km/s/Myr

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.freq_in_Gyr
galpy.util.bovy_conversion.freq_in_Gyr(vo, ro)

NAME:

freq_in_Gyr

PURPOSE:

convert a frequency to 1/Gyr

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.freq_in_kmskpc
galpy.util.bovy_conversion.freq_in_kmskpc(vo, ro)

NAME:

freq_in_kmskpc

PURPOSE:

convert a frequency to km/s/kpc

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.surfdens_in_msolpc2
galpy.util.bovy_conversion.surfdens_in_msolpc2(vo, ro)

NAME:

surfdens_in_msolpc2

PURPOSE:

convert a surface density to Msolar / pc^2

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.mass_in_msol
galpy.util.bovy_conversion.mass_in_msol(vo, ro)

NAME:

mass_in_msol

PURPOSE:

convert a mass to Msolar

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.mass_in_1010msol
galpy.util.bovy_conversion.mass_in_1010msol(vo, ro)

NAME:

mass_in_1010msol

PURPOSE:

convert a mass to 10^10 x Msolar

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)
galpy.util.bovy_conversion.time_in_Gyr
galpy.util.bovy_conversion.time_in_Gyr(vo, ro)

NAME:

time_in_Gyr

PURPOSE:

convert a time to Gyr

INPUT:

vo - velocity unit in km/s

ro - length unit in kpc

OUTPUT:

conversion from units where vo=1. at ro=1.

HISTORY:

2013-09-01 - Written - Bovy (IAS)

galpy.util.bovy_coords

Various coordinate transformation routines with fairly self-explanatory names:

galpy.util.bovy_coords.cov_dvrpmllbb_to_vxyz
galpy.util.bovy_coords.cov_dvrpmllbb_to_vxyz(d, e_d, e_vr, pmll, pmbb, cov_pmllbb, l, b, plx=False, degree=False)

NAME:

cov_dvrpmllbb_to_vxyz

PURPOSE:

propagate distance, radial velocity, and proper motion uncertainties to Galactic coordinates

INPUT:

d - distance [kpc, as/mas for plx]

e_d - distance uncertainty [kpc, [as/mas] for plx]

e_vr - low velocity uncertainty [km/s]

pmll - proper motion in l (*cos(b)) [ [as/mas]/yr ]

pmbb - proper motion in b [ [as/mas]/yr ]

cov_pmllbb - uncertainty covariance for proper motion

l - Galactic longitude

b - Galactic lattitude

KEYWORDS:

plx - if True, d is a parallax, and e_d is a parallax uncertainty

degree - if True, l and b are given in degree

OUTPUT:

cov(vx,vy,vz) [3,3] or [:,3,3]

HISTORY:

2010-04-12 - Written - Bovy (NYU)
galpy.util.bovy_coords.cov_pmrapmdec_to_pmllpmbb
galpy.util.bovy_coords.cov_pmrapmdec_to_pmllpmbb(cov_pmradec, ra, dec, degree=False, epoch=2000.0)

NAME:

cov_pmrapmdec_to_pmllpmbb

PURPOSE:

propagate the proper motions errors through the rotation from (ra,dec) to (l,b)

INPUT:

covar_pmradec - uncertainty covariance matrix of the proper motion in ra (multplied with cos(dec)) and dec [2,2] or [:,2,2]

ra - right ascension

dec - declination

degree - if True, ra and dec are given in degrees (default=False)

epoch - epoch of ra,dec (right now only 2000.0 and 1950.0 are supported)

OUTPUT:

covar_pmllbb [2,2] or [:,2,2]

HISTORY:

2010-04-12 - Written - Bovy (NYU)
galpy.util.bovy_coords.cyl_to_rect
galpy.util.bovy_coords.cyl_to_rect(R, phi, Z)

NAME:

cyl_to_rect

PURPOSE:

convert from cylindrical to rectangular coordinates

INPUT:

R, phi, Z - cylindrical coordinates

OUTPUT:

[:,3] X,Y,Z

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.util.bovy_coords.cyl_to_rect_vec
galpy.util.bovy_coords.cyl_to_rect_vec(vr, vt, vz, phi)

NAME:

cyl_to_rect_vec

PURPOSE:

transform vectors from cylindrical to rectangular coordinate vectors

INPUT:

vr - radial velocity

vt - tangential velocity

vz - vertical velocity

phi - azimuth

OUTPUT:

vx,vy,vz

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.dl_to_rphi_2d
galpy.util.bovy_coords.dl_to_rphi_2d(d, l, degree=False, ro=1.0, phio=0.0)

NAME:

dl_to_rphi_2d

PURPOSE:

convert Galactic longitude and distance to Galactocentric radius and azimuth

INPUT:

d - distance

l - Galactic longitude [rad/deg if degree]

KEYWORDS:

degree= (False): l is in degrees rather than rad

ro= (1) Galactocentric radius of the observer

phio= (0) Galactocentric azimuth of the observer [rad/deg if degree]

OUTPUT:

(R,phi); phi in degree if degree

HISTORY:

2012-01-04 - Written - Bovy (IAS)
galpy.util.bovy_coords.galcencyl_to_XYZ
galpy.util.bovy_coords.galcencyl_to_XYZ(R, phi, Z, Xsun=1.0, Ysun=0.0, Zsun=0.0)

NAME:

galcencyl_to_XYZ

PURPOSE:

transform cylindrical Galactocentric coordinates to XYZ coordinates (wrt Sun)

INPUT:

R, phi, Z - Galactocentric cylindrical coordinates

OUTPUT:

[:,3]= X,Y,Z

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.util.bovy_coords.galcencyl_to_vxvyvz
galpy.util.bovy_coords.galcencyl_to_vxvyvz(vR, vT, vZ, phi, vsun=[0.0, 1.0, 0.0])

NAME:

galcencyl_to_vxvyvz

PURPOSE:

transform cylindrical Galactocentric coordinates to XYZ (wrt Sun) coordinates for velocities

INPUT:

vR - Galactocentric radial velocity

vT - Galactocentric tangential velocity

vZ - Galactocentric vertical velocity

phi - Galactocentric azimuth

vsun - velocity of the sun in the GC frame ndarray[3]

OUTPUT:

vx,vy,vz

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.galcenrect_to_XYZ
galpy.util.bovy_coords.galcenrect_to_XYZ(X, Y, Z, Xsun=1.0, Ysun=0.0, Zsun=0.0)

NAME:

galcenrect_to_XYZ

PURPOSE:

transform rectangular Galactocentric to XYZ coordinates (wrt Sun) coordinates

INPUT:

X, Y, Z - Galactocentric rectangular coordinates

OUTPUT:

(X, Y, Z)

HISTORY:

2011-02-23 - Written - Bovy (NYU)
galpy.util.bovy_coords.galcenrect_to_vxvyvz
galpy.util.bovy_coords.galcenrect_to_vxvyvz(vXg, vYg, vZg, vsun=[0.0, 1.0, 0.0])

NAME:

galcenrect_to_vxvyvz

PURPOSE:

transform rectangular Galactocentric coordinates to XYZ coordinates (wrt Sun) for velocities

INPUT:

vXg - Galactocentric x-velocity

vYg - Galactocentric y-velocity

vZg - Galactocentric z-velocity

vsun - velocity of the sun in the GC frame ndarray[3]

OUTPUT:

[:,3]= vx, vy, vz

HISTORY:

2011-02-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.lb_to_radec
galpy.util.bovy_coords.lb_to_radec(*args, **kwargs)

NAME:

lb_to_radec

PURPOSE:

transform from Galactic coordinates to equatorial coordinates

INPUT:

l - Galactic longitude

b - Galactic lattitude

degree - (Bool) if True, l and b are given in degree and ra and dec will be as well

epoch - epoch of target ra,dec (right now only 2000.0 and 1950.0 are supported)

OUTPUT:

ra,dec

For vector inputs [:,2]

HISTORY:

2010-04-07 - Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_coords.lb_to_radec
galpy.util.bovy_coords.lbd_to_XYZ(*args, **kwargs)

NAME:

lbd_to_XYZ

PURPOSE:

transform from spherical Galactic coordinates to rectangular Galactic coordinates (works with vector inputs)

INPUT:

l - Galactic longitude (rad)

b - Galactic lattitude (rad)

d - distance (arbitrary units)

degree - (bool) if True, l and b are in degrees

OUTPUT:

[X,Y,Z] in whatever units d was in

For vector inputs [:,3]

HISTORY:

2009-10-24- Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_coords.pmllpmbb_to_pmrapmdec
galpy.util.bovy_coords.pmllpmbb_to_pmrapmdec(*args, **kwargs)

NAME:

pmllpmbb_to_pmrapmdec

PURPOSE:

rotate proper motions in (l,b) into proper motions in (ra,dec)

INPUT:

pmll - proper motion in l (multplied with cos(b)) [mas/yr]

pmbb - proper motion in b [mas/yr]

l - Galactic longitude

b - Galactic lattitude

degree - if True, l and b are given in degrees (default=False)

epoch - epoch of ra,dec (right now only 2000.0 and 1950.0 are supported)

OUTPUT:

(pmra,pmdec), for vector inputs [:,2]

HISTORY:

2010-04-07 - Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_coords.pmrapmdec_to_pmllpmbb
galpy.util.bovy_coords.pmrapmdec_to_pmllpmbb(*args, **kwargs)

NAME:

pmrapmdec_to_pmllpmbb

PURPOSE:

rotate proper motions in (ra,dec) into proper motions in (l,b)

INPUT:

pmra - proper motion in ra (multplied with cos(dec)) [mas/yr]

pmdec - proper motion in dec [mas/yr]

ra - right ascension

dec - declination

degree - if True, ra and dec are given in degrees (default=False)

epoch - epoch of ra,dec (right now only 2000.0 and 1950.0 are supported)

OUTPUT:

(pmll,pmbb) for vector inputs [:,2]

HISTORY:

2010-04-07 - Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_coords.radec_to_lb
galpy.util.bovy_coords.radec_to_lb(*args, **kwargs)

NAME:

radec_to_lb

PURPOSE:

transform from equatorial coordinates to Galactic coordinates

INPUT:

ra - right ascension

dec - declination

degree - (Bool) if True, ra and dec are given in degree and l and b will be as well

epoch - epoch of ra,dec (right now only 2000.0 and 1950.0 are supported)

OUTPUT:

l,b

For vector inputs [:,2]

HISTORY:

2009-11-12 - Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_coords.rectgal_to_sphergal
galpy.util.bovy_coords.rectgal_to_sphergal(X, Y, Z, vx, vy, vz, degree=False)

NAME:

rectgal_to_sphergal

PURPOSE:

transform phase-space coordinates in rectangular Galactic coordinates to spherical Galactic coordinates (can take vector inputs)

INPUT:

X - component towards the Galactic Center (kpc)

Y - component in the direction of Galactic rotation (kpc)

Z - component towards the North Galactic Pole (kpc)

vx - velocity towards the Galactic Center (km/s)

vy - velocity in the direction of Galactic rotation (km/s)

vz - velocity towards the North Galactic Pole (km/s)

degree - (Bool) if True, return l and b in degrees

OUTPUT:

(l,b,d,vr,pmll,pmbb) in (rad,rad,kpc,km/s,mas/yr,mas/yr)

HISTORY:

2009-10-25 - Written - Bovy (NYU)
galpy.util.bovy_coords.rect_to_cyl
galpy.util.bovy_coords.rect_to_cyl(X, Y, Z)

NAME:

rect_to_cyl

PURPOSE:

convert from rectangular to cylindrical coordinates

INPUT:

X, Y, Z - rectangular coordinates

OUTPUT:

[:,3] R,phi,z

HISTORY:

2010-09-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.rect_to_cyl_vec
galpy.util.bovy_coords.rect_to_cyl_vec(vx, vy, vz, X, Y, Z, cyl=False)

NAME:

rect_to_cyl_vec

PURPOSE:

transform vectors from rectangular to cylindrical coordinates vectors

INPUT:

vx -

vy -

vz -

X - X

Y - Y

Z - Z

cyl - if True, X,Y,Z are already cylindrical

OUTPUT:

vR,vT,vz

HISTORY:

2010-09-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.rphi_to_dl_2d
galpy.util.bovy_coords.rphi_to_dl_2d(R, phi, degree=False, ro=1.0, phio=0.0)

NAME:

rphi_to_dl_2d

PURPOSE:

convert Galactocentric radius and azimuth to distance and Galactic longitude

INPUT:

R - Galactocentric radius

phi - Galactocentric azimuth [rad/deg if degree]

KEYWORDS:

degree= (False): phi is in degrees rather than rad

ro= (1) Galactocentric radius of the observer

phio= (0) Galactocentric azimuth of the observer [rad/deg if degree]

OUTPUT:

(d,l); phi in degree if degree

HISTORY:

2012-01-04 - Written - Bovy (IAS)
galpy.util.bovy_coords.Rz_to_coshucosv
galpy.util.bovy_coords.Rz_to_coshucosv(R, z, delta=1.0)

NAME:

Rz_to_coshucosv

PURPOSE:

calculate prolate confocal cosh(u) and cos(v) coordinates from R,z, and delta

INPUT:

R - radius

z - height

delta= focus

OUTPUT:

(cosh(u),cos(v))

HISTORY:

2012-11-27 - Written - Bovy (IAS)
galpy.util.bovy_coords.Rz_to_uv
galpy.util.bovy_coords.Rz_to_uv(R, z, delta=1.0)

NAME:

Rz_to_uv

PURPOSE:

calculate prolate confocal u and v coordinates from R,z, and delta

INPUT:

R - radius

z - height

delta= focus

OUTPUT:

(u,v)

HISTORY:

2012-11-27 - Written - Bovy (IAS)
galpy.util.bovy_coords.sphergal_to_rectgal
galpy.util.bovy_coords.sphergal_to_rectgal(l, b, d, vr, pmll, pmbb, degree=False)

NAME:

sphergal_to_rectgal

PURPOSE:

transform phase-space coordinates in spherical Galactic coordinates to rectangular Galactic coordinates (can take vector inputs)

INPUT:

l - Galactic longitude (rad)

b - Galactic lattitude (rad)

d - distance (kpc)

vr - line-of-sight velocity (km/s)

pmll - proper motion in the Galactic longitude direction (mu_l*cos(b) ) (mas/yr)

pmbb - proper motion in the Galactic lattitude (mas/yr)

degree - (bool) if True, l and b are in degrees

OUTPUT:

(X,Y,Z,vx,vy,vz) in (kpc,kpc,kpc,km/s,km/s,km/s)

HISTORY:

2009-10-25 - Written - Bovy (NYU)
galpy.util.bovy_coords.uv_to_Rz
galpy.util.bovy_coords.uv_to_Rz(u, v, delta=1.0)

NAME:

uv_to_Rz

PURPOSE:

calculate R and z from prolate confocal u and v coordinates

INPUT:

u - confocal u

v - confocal v

delta= focus

OUTPUT:

(R,z)

HISTORY:

2012-11-27 - Written - Bovy (IAS)
galpy.util.bovy_coords.vrpmllpmbb_to_vxvyvz
galpy.util.bovy_coords.vrpmllpmbb_to_vxvyvz(*args, **kwargs)

NAME:

vrpmllpmbb_to_vxvyvz

PURPOSE:

Transform velocities in the spherical Galactic coordinate frame to the rectangular Galactic coordinate frame (can take vector inputs)

INPUT:

vr - line-of-sight velocity (km/s)

pmll - proper motion in the Galactic longitude (mu_l * cos(b))(mas/yr)

pmbb - proper motion in the Galactic lattitude (mas/yr)

l - Galactic longitude

b - Galactic lattitude

d - distance (kpc)

XYZ - (bool) If True, then l,b,d is actually X,Y,Z (rectangular Galactic coordinates)

degree - (bool) if True, l and b are in degrees

OUTPUT:

(vx,vy,vz) in (km/s,km/s,km/s)

For vector inputs [:,3]

HISTORY:

2009-10-24 - Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_coords.vxvyvz_to_galcencyl
galpy.util.bovy_coords.vxvyvz_to_galcencyl(vx, vy, vz, X, Y, Z, vsun=[0.0, 1.0, 0.0], galcen=False)

NAME:

vxvyvz_to_galcencyl

PURPOSE:

transform velocities in XYZ coordinates (wrt Sun) to cylindrical Galactocentric coordinates for velocities

INPUT:

vx - U

vy - V

vz - W

X - X in Galactocentric rectangular coordinates

Y - Y in Galactocentric rectangular coordinates

Z - Z in Galactocentric rectangular coordinates

vsun - velocity of the sun in the GC frame ndarray[3]

galcen - if True, then X,Y,Z are in cylindrical Galactocentric coordinates rather than rectangular coordinates

OUTPUT:

vRg, vTg, vZg

HISTORY:

2010-09-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.vxvyvz_to_galcenrect
galpy.util.bovy_coords.vxvyvz_to_galcenrect(vx, vy, vz, vsun=[0.0, 1.0, 0.0])

NAME:

vxvyvz_to_galcenrect

PURPOSE:

transform velocities in XYZ coordinates (wrt Sun) to rectangular Galactocentric coordinates for velocities

INPUT:

vx - U

vy - V

vz - W

vsun - velocity of the sun in the GC frame ndarray[3]

OUTPUT:

[:,3]= vXg, vYg, vZg

HISTORY:

2010-09-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.vxvyvz_to_vrpmllpmbb
galpy.util.bovy_coords.vxvyvz_to_vrpmllpmbb(*args, **kwargs)

NAME:

vxvyvz_to_vrpmllpmbb

PURPOSE:

Transform velocities in the rectangular Galactic coordinate frame to the spherical Galactic coordinate frame (can take vector inputs)

INPUT:

vx - velocity towards the Galactic Center (km/s)

vy - velocity in the direction of Galactic rotation (km/s)

vz - velocity towards the North Galactic Pole (km/s)

l - Galactic longitude

b - Galactic lattitude

d - distance (kpc)

XYZ - (bool) If True, then l,b,d is actually X,Y,Z (rectangular Galactic coordinates)

degree - (bool) if True, l and b are in degrees

OUTPUT:

(vr,pmll,pmbb) in (km/s,mas/yr,mas/yr); pmll = mu_l * cos(b)

For vector inputs [:,3]

HISTORY:

2009-10-24 - Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_coords.XYZ_to_galcencyl
galpy.util.bovy_coords.XYZ_to_galcencyl(X, Y, Z, Xsun=1.0, Ysun=0.0, Zsun=0.0)

NAME:

XYZ_to_galcencyl

PURPOSE:

transform XYZ coordinates (wrt Sun) to cylindrical Galactocentric coordinates

INPUT:

X - X

Y - Y

Z - Z

OUTPUT:

[:,3]= R,phi,z

HISTORY:

2010-09-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.XYZ_to_galcenrect
galpy.util.bovy_coords.XYZ_to_galcenrect(X, Y, Z, Xsun=1.0, Ysun=0.0, Zsun=0.0)

NAME:

XYZ_to_galcenrect

PURPOSE:

transform XYZ coordinates (wrt Sun) to rectangular Galactocentric coordinates

INPUT:

X - X

Y - Y

Z - Z

OUTPUT:

(Xg, Yg, Zg)

HISTORY:

2010-09-24 - Written - Bovy (NYU)
galpy.util.bovy_coords.XYZ_to_lbd
galpy.util.bovy_coords.XYZ_to_lbd(*args, **kwargs)

NAME:

XYZ_to_lbd

PURPOSE:

transform from rectangular Galactic coordinates to spherical Galactic coordinates (works with vector inputs)

INPUT:

X - component towards the Galactic Center (in kpc; though this obviously does not matter))

Y - component in the direction of Galactic rotation (in kpc)

Z - component towards the North Galactic Pole (kpc)

degree - (Bool) if True, return l and b in degrees

OUTPUT:

[l,b,d] in (rad or degree,rad or degree,kpc)

For vector inputs [:,3]

HISTORY:

2009-10-24 - Written - Bovy (NYU)

2014-06-14 - Re-written w/ numpy functions for speed and w/ decorators for beauty - Bovy (IAS)

galpy.util.bovy_ars.bovy_ars

galpy.util.bovy_ars.bovy_ars(domain, isDomainFinite, abcissae, hx, hpx, nsamples=1, hxparams=(), maxn=100)

bovy_ars: Implementation of the Adaptive-Rejection Sampling algorithm by Gilks & Wild (1992): Adaptive Rejection Sampling for Gibbs Sampling, Applied Statistics, 41, 337 Based on Wild & Gilks (1993), Algorithm AS 287: Adaptive Rejection Sampling from Log-concave Density Functions, Applied Statistics, 42, 701

Input:

domain - [.,.] upper and lower limit to the domain

isDomainFinite - [.,.] is there a lower/upper limit to the domain?

abcissae - initial list of abcissae (must lie on either side of the peak in hx if the domain is unbounded

hx - function that evaluates h(x) = ln g(x)

hpx - function that evaluates hp(x) = d h(x) / d x

nsamples - (optional) number of desired samples (default=1)

hxparams - (optional) a tuple of parameters for h(x) and h’(x)

maxn - (optional) maximum number of updates to the hull (default=100)

Output:

list with nsamples of samples from exp(h(x))

External dependencies:

math scipy scipy.stats
History:
2009-05-21 - Written - Bovy (NYU)

Papers using galpy

Please let me (bovy -at- ias.edu) know if you make use of galpy in a publication.

  • Tracing the Hercules stream around the Galaxy, Jo Bovy (2010), Astrophys. J. 725, 1676 (2010ApJ...725.1676B):

    Uses what later became the orbit integration routines and Dehnen and Shu disk distribution functions.

  • The spatial structure of mono-abundance sub-populations of the Milky Way disk, Jo Bovy, Hans-Walter Rix, Chao Liu, et al. (2012), Astrophys. J. 753, 148 (2012ApJ...753..148B):

    Employs galpy orbit integration in galpy.potential.MWPotential to characterize the orbits in the SEGUE G dwarf sample.

  • On the local dark matter density, Jo Bovy & Scott Tremaine (2012), Astrophys. J. 756, 89 (2012ApJ...756...89B):

    Uses galpy.potential force and density routines to characterize the difference between the vertical force and the surface density at large heights above the MW midplane.

  • The Milky Way’s circular velocity curve between 4 and 14 kpc from APOGEE data, Jo Bovy, Carlos Allende Prieto, Timothy C. Beers, et al. (2012), Astrophys. J. 759, 131 (2012ApJ...759..131B):

    Utilizes the Dehnen distribution function to inform a simple model of the velocity distribution of APOGEE stars in the Milky Way disk and to create mock data.

  • A direct dynamical measurement of the Milky Way’s disk surface density profile, disk scale length, and dark matter profile at 4 kpc < R < 9 kpc, Jo Bovy & Hans-Walter Rix (2013), Astrophys. J. 779, 115 (2013ApJ...779..115B):

    Makes use of potential models, the adiabatic and Staeckel actionAngle modules, and the quasiisothermal DF to model the dynamics of the SEGUE G dwarf sample in mono-abundance bins.

  • The peculiar pulsar population of the central parsec, Jason Dexter & Ryan M. O’Leary (2013), Astrophys. J. Lett., 783, L7 (2014ApJ...783L...7D):

    Uses galpy for orbit integration of pulsars kicked out of the Galactic center.

  • Chemodynamics of the Milky Way. I. The first year of APOGEE data, Friedrich Anders, Christina Chiappini, Basilio X. Santiago, et al. (2013), Astron. & Astrophys., 564, A115 (2014A&A...564A.115A):

    Employs galpy to perform orbit integrations in galpy.potential.MWPotential to characterize the orbits of stars in the APOGEE sample.

  • Dynamical modeling of tidal streams, Jo Bovy (2014), Astrophys. J, in press (arXiv/1401.2985):

    Introduces galpy.df.streamdf and galpy.actionAngle.actionAngleIsochroneApprox for modeling tidal streams using simple models formulated in action-angle space (see the tutorial above).

  • The Milky Way Tomography with SDSS. V. Mapping the Dark Matter Halo, Sarah R. Loebman, Zeljko Ivezic Thomas R. Quinn, Jo Bovy, Charlotte R. Christensen, Mario Juric, Rok Roskar, Alyson M. Brooks, & Fabio Governato (2014), Astrophys. J, in press (arXiv/1408.5388):

    Uses galpy.potential functions to calculate the acceleration field of the best-fit potential in Bovy & Rix (2013) above.

Acknowledging galpy

If you use galpy in a publication, please cite Bovy (2015) and link to http://github.com/jobovy/galpy. Please also send me a reference to the paper or send a pull request including your paper in the list of galpy papers on this page (this page is at doc/source/index.rst). Thanks!

When using the galpy.actionAngle.actionAngleAdiabatic and galpy.actionAngle.actionAngleStaeckel modules, please cite 2013ApJ...779..115B in addition to the papers describing the algorithm used. When using galpy.actionAngle.actionAngleIsochroneApprox, please cite arXiv/1401.2985, which introduced this technique.

Indices and tables