galpy.orbit.Orbit.integrate_SOS

Orbit.integrate_SOS(psi, pot, surface=None, t0=0.0, method='dop853_c', progressbar=True, numcores=2, force_map=False)[source]

Integrate this Orbit instance using an independent variable suitable to creating surfaces-of-section.

Parameters:
  • psi (list, numpy.ndarray or Quantity) – Equispaced list of increment angles over which to integrate [increments wrt initial angle].

  • pot (Potential, DissipativeForce or list of such instances) – Gravitational field to integrate the orbit in.

  • surface (str, optional) – Surface to punch through (this has no effect in 3D, where the surface is always z=0, but in 2D it can be ‘x’ or ‘y’ for x=0 or y=0).

  • t0 (float or Quantity, optional) – Initial time.

  • method ({'odeint', 'dop853_c', 'dop853', 'rk4_c', 'rk6_c', 'dop54_c'}, optional) – Integration method to use. Default is ‘dop853_c’. See Notes for more information.

  • progressbar (bool, optional) – If True, display a tqdm progress bar when integrating multiple orbits (requires tqdm to be installed!).

  • numcores (int, optional) – Number of cores to use for Python-based multiprocessing (pure Python or using force_map=True); default = OMP_NUM_THREADS.

  • force_map (bool, optional) – If True, force use of Python-based multiprocessing (not recommended).

Returns:

Get the actual orbit using getOrbit() or access the individual attributes (e.g., R, vR, etc.).

Return type:

None

Notes

  • Possible integration methods are:

    • ‘odeint’ for scipy’s odeint

    • ‘rk4_c’ for a 4th-order Runge-Kutta integrator in C

    • ‘rk6_c’ for a 6-th order Runge-Kutta integrator in C

    • ‘dopr54_c’ for a 5-4 Dormand-Prince integrator in C

    • ‘dop853’ for a 8-5-3 Dormand-Prince integrator in Python

    • ‘dop853_c’ for a 8-5-3 Dormand-Prince integrator in C

  • 2023-03-16 - Written - Bovy (UofT)