Triaxial Hernquist potential¶
- class galpy.potential.TriaxialHernquistPotential(amp=1.0, a=2.0, normalize=False, b=1.0, c=1.0, zvec=None, pa=None, glorder=50, ro=None, vo=None)[source]¶
Class that implements the triaxial Hernquist potential
\[\rho(x,y,z) = \frac{\mathrm{amp}}{4\,\pi\,a^3}\,\frac{1}{(m/a)\,(1+m/a)^{3}}\]with
\[m^2 = x'^2 + \frac{y'^2}{b^2}+\frac{z'^2}{c^2}\]and \((x',y',z')\) is a rotated frame wrt \((x,y,z)\) specified by parameters
zvec
andpa
which specify (a)zvec
: the location of the \(z'\) axis in the \((x,y,z)\) frame and (b)pa
: the position angle of the \(x'\) axis wrt the \(\tilde{x}\) axis, that is, the \(x\) axis after rotating tozvec
.- __init__(amp=1.0, a=2.0, normalize=False, b=1.0, c=1.0, zvec=None, pa=None, glorder=50, ro=None, vo=None)[source]¶
Initialize a triaxial two-power-density potential.
- Parameters:
amp (float or Quantity, optional) – Amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass or Gxmass.
a (float or Quantity, optional) – Scale radius.
normalize (bool or float, optional) – If True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.
b (float, optional) – y-to-x axis ratio of the density.
c (float, optional) – z-to-x axis ratio of the density.
zvec (numpy.ndarray, optional) – If set, a unit vector that corresponds to the z axis.
pa (float or Quantity, optional) – If set, the position angle of the x axis.
glorder (int, optional) – If set, compute the relevant force and potential integrals with Gaussian quadrature of this order.
ro (float or Quantity, optional) – Distance scale for translation into internal units (default from configuration file).
vo (float or Quantity, optional) – Velocity scale for translation into internal units (default from configuration file).
Notes
2010-07-09 - Written - Bovy (UofT)
2018-08-07 - Re-written using the general EllipsoidalPotential class - Bovy (UofT)