Triaxial Jaffe potential

class galpy.potential.TriaxialJaffePotential(amp=1.0, a=2.0, b=1.0, c=1.0, zvec=None, pa=None, normalize=False, glorder=50, ro=None, vo=None)[source]

Class that implements the Jaffe potential

\[\rho(x,y,z) = \frac{\mathrm{amp}}{4\,\pi\,a^3}\,\frac{1}{(m/a)^2\,(1+m/a)^{2}}\]

with

\[m^2 = x'^2 + \frac{y'^2}{b^2}+\frac{z'^2}{c^2}\]

and \((x',y',z')\) is a rotated frame wrt \((x,y,z)\) specified by parameters zvec and pa which specify (a) zvec: the location of the \(z'\) axis in the \((x,y,z)\) frame and (b) pa: the position angle of the \(x'\) axis wrt the \(\tilde{x}\) axis, that is, the \(x\) axis after rotating to zvec.

__init__(amp=1.0, a=2.0, b=1.0, c=1.0, zvec=None, pa=None, normalize=False, glorder=50, ro=None, vo=None)[source]

Two-power-law triaxial potential

Parameters:
  • amp (float or Quantity, optional) – Amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass or Gxmass

  • a (float or Quantity, optional) – Scale radius.

  • b (float, optional) – y-to-x axis ratio of the density

  • c (float, optional) – z-to-x axis ratio of the density

  • zvec (numpy.ndarray, optional) – If set, a unit vector that corresponds to the z axis

  • pa (float or Quantity, optional) – If set, the position angle of the x axis

  • glorder (int, optional) – If set, compute the relevant force and potential integrals with Gaussian quadrature of this order

  • normalize (bool or float, optional) – If True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

  • ro (float or Quantity, optional) – Distance scale for translation into internal units (default from configuration file).

  • vo (float or Quantity, optional) – Velocity scale for translation into internal units (default from configuration file).

Notes

  • 2010-07-09 - Written - Bovy (UofT)

  • 2018-08-07 - Re-written using the general EllipsoidalPotential class - Bovy (UofT)