Source code for galpy.potential.PerfectEllipsoidPotential

###############################################################################
#   PerfectEllipsoidPotential.py: Potential of the perfect ellipsoid 
#                                 (de Zeeuw 1985):
#
#                                 \rho(x,y,z) ~ 1/(1+m^2)^2
#
#                                 with m^2 = x^2+y^2/b^2+z^2/c^2
#
###############################################################################
import numpy
from ..util import conversion
from .EllipsoidalPotential import EllipsoidalPotential
[docs]class PerfectEllipsoidPotential(EllipsoidalPotential): """Potential of the perfect ellipsoid (de Zeeuw 1985): .. math:: \\rho(x,y,z) = \\frac{\\mathrm{amp\,a}}{\\pi^2\\,bc}\\,\\frac{1}{(m^2+a^2)^2} where :math:`\\mathrm{amp} = GM` is the total mass and :math:`m^2 = x^2+y^2/b^2+z^2/c^2`. """
[docs] def __init__(self,amp=1.,a=5.,b=1.,c=1., zvec=None,pa=None,glorder=50, normalize=False,ro=None,vo=None): """ NAME: __init__ PURPOSE: initialize a perfect ellipsoid potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass or G x mass a - scale radius (can be Quantity) b - y-to-x axis ratio of the density c - z-to-x axis ratio of the density zvec= (None) If set, a unit vector that corresponds to the z axis pa= (None) If set, the position angle of the x axis (rad or Quantity) glorder= (50) if set, compute the relevant force and potential integrals with Gaussian quadrature of this order ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: (none) HISTORY: 2018-08-06 - Started - Bovy (UofT) """ EllipsoidalPotential.__init__(self,amp=amp,b=b,c=c, zvec=zvec,pa=pa,glorder=glorder, ro=ro,vo=vo,amp_units='mass') a= conversion.parse_length(a,ro=self._ro) self.a= a self.a2= self.a**2 self._scale= self.a # Adjust amp self._amp*= self.a/(numpy.pi**2*self._b*self._c) if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) self.hasC= not self._glorder is None self.hasC_dxdv= False self.hasC_dens= self.hasC # works if mdens is defined, necessary for hasC return None
def _psi(self,m): """\psi(m) = -\int_m^\infty d m^2 \rho(m^2)""" return -1./(self.a2+m**2) def _mdens(self,m): """Density as a function of m""" return (self.a2+m**2)**-2 def _mdens_deriv(self,m): """Derivative of the density as a function of m""" return -4.*m*(self.a2+m**2)**-3 def _mass(self,R,z=None,t=0.): """ NAME: _mass PURPOSE: evaluate the mass within R (and z) for this potential; if z=None, integrate to ellipsoidal boundary INPUT: R - Galactocentric cylindrical radius z - vertical height t - time OUTPUT: the mass enclosed HISTORY: 2021-03-08 - Written - Bovy (UofT) """ if not z is None: raise AttributeError # Hack to fall back to general return 2.*numpy.pi*self._b*self._c/self.a\ *(numpy.arctan(R/self.a)-R*self.a/(1.+R**2.))