Source code for galpy.potential.TwoPowerTriaxialPotential

###############################################################################
#   TwoPowerTriaxialPotential.py: General class for triaxial potentials 
#                                 derived from densities with two power-laws
#
#                                                    amp/[4pia^3]
#                             rho(r)= ------------------------------------
#                                      (m/a)^\alpha (1+m/a)^(\beta-\alpha)
#
#                             with
#
#                             m^2 = x^2 + y^2/b^2 + z^2/c^2
###############################################################################
import numpy
from scipy import special
from ..util import conversion
from .EllipsoidalPotential import EllipsoidalPotential
[docs]class TwoPowerTriaxialPotential(EllipsoidalPotential): """Class that implements triaxial potentials that are derived from two-power density models .. math:: \\rho(x,y,z) = \\frac{\\mathrm{amp}}{4\\,\\pi\\,a^3}\\,\\frac{1}{(m/a)^\\alpha\\,(1+m/a)^{\\beta-\\alpha}} with .. math:: m^2 = x'^2 + \\frac{y'^2}{b^2}+\\frac{z'^2}{c^2} and :math:`(x',y',z')` is a rotated frame wrt :math:`(x,y,z)` specified by parameters ``zvec`` and ``pa`` which specify (a) ``zvec``: the location of the :math:`z'` axis in the :math:`(x,y,z)` frame and (b) ``pa``: the position angle of the :math:`x'` axis wrt the :math:`\\tilde{x}` axis, that is, the :math:`x` axis after rotating to ``zvec``. Note that this general class of potentials does *not* automatically revert to the special TriaxialNFWPotential, TriaxialHernquistPotential, or TriaxialJaffePotential when using their (alpha,beta) values (like TwoPowerSphericalPotential). """
[docs] def __init__(self,amp=1.,a=5.,alpha=1.5,beta=3.5,b=1.,c=1., zvec=None,pa=None,glorder=50, normalize=False,ro=None,vo=None): """ NAME: __init__ PURPOSE: initialize a triaxial two-power-density potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass or Gxmass a - scale radius (can be Quantity) alpha - inner power (0 <= alpha < 3) beta - outer power ( beta > 2) b - y-to-x axis ratio of the density c - z-to-x axis ratio of the density zvec= (None) If set, a unit vector that corresponds to the z axis pa= (None) If set, the position angle of the x axis (rad or Quantity) glorder= (50) if set, compute the relevant force and potential integrals with Gaussian quadrature of this order normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: (none) HISTORY: 2016-05-30 - Started - Bovy (UofT) 2018-08-07 - Re-written using the general EllipsoidalPotential class - Bovy (UofT) """ EllipsoidalPotential.__init__(self,amp=amp,b=b,c=c, zvec=zvec,pa=pa,glorder=glorder, ro=ro,vo=vo,amp_units='mass') a= conversion.parse_length(a,ro=self._ro) self.a= a self._scale= self.a if beta <= 2. or alpha >= 3.: raise IOError('TwoPowerTriaxialPotential requires 0 <= alpha < 3 and beta > 2') self.alpha= alpha self.beta= beta self.betaminusalpha= self.beta-self.alpha self.twominusalpha= 2.-self.alpha self.threeminusalpha= 3.-self.alpha if self.twominusalpha != 0.: self.psi_inf= special.gamma(self.beta-2.)\ *special.gamma(3.-self.alpha)\ /special.gamma(self.betaminusalpha) # Adjust amp self._amp/= (4.*numpy.pi*self.a**3) if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) return None
def _psi(self,m): """\psi(m) = -\int_m^\infty d m^2 \rho(m^2)""" if self.twominusalpha == 0.: return -2.*self.a**2*(self.a/m)**self.betaminusalpha\ /self.betaminusalpha\ *special.hyp2f1(self.betaminusalpha, self.betaminusalpha, self.betaminusalpha+1, -self.a/m) else: return -2.*self.a**2\ *(self.psi_inf-(m/self.a)**self.twominusalpha\ /self.twominusalpha\ *special.hyp2f1(self.twominusalpha, self.betaminusalpha, self.threeminusalpha, -m/self.a)) def _mdens(self,m): """Density as a function of m""" return (self.a/m)**self.alpha/(1.+m/self.a)**(self.betaminusalpha) def _mdens_deriv(self,m): """Derivative of the density as a function of m""" return -self._mdens(m)*(self.a*self.alpha+self.beta*m)/m/(self.a+m) def _mass(self,R,z=None,t=0.): """ NAME: _mass PURPOSE: evaluate the mass within R (and z) for this potential; if z=None, integrate to ellipsoidal boundary INPUT: R - Galactocentric cylindrical radius z - vertical height t - time OUTPUT: the mass enclosed HISTORY: 2021-03-09 - Written - Bovy (UofT) """ if not z is None: raise AttributeError # Hack to fall back to general return 4.*numpy.pi*self.a**self.alpha\ *R**(3.-self.alpha)/(3.-self.alpha)*self._b*self._c\ *special.hyp2f1(3.-self.alpha,self.betaminusalpha, 4.-self.alpha,-R/self.a)
[docs]class TriaxialHernquistPotential(EllipsoidalPotential): """Class that implements the triaxial Hernquist potential .. math:: \\rho(x,y,z) = \\frac{\\mathrm{amp}}{4\\,\\pi\\,a^3}\\,\\frac{1}{(m/a)\\,(1+m/a)^{3}} with .. math:: m^2 = x'^2 + \\frac{y'^2}{b^2}+\\frac{z'^2}{c^2} and :math:`(x',y',z')` is a rotated frame wrt :math:`(x,y,z)` specified by parameters ``zvec`` and ``pa`` which specify (a) ``zvec``: the location of the :math:`z'` axis in the :math:`(x,y,z)` frame and (b) ``pa``: the position angle of the :math:`x'` axis wrt the :math:`\\tilde{x}` axis, that is, the :math:`x` axis after rotating to ``zvec``. """
[docs] def __init__(self,amp=1.,a=2.,normalize=False,b=1.,c=1.,zvec=None,pa=None, glorder=50,ro=None,vo=None): """ NAME: __init__ PURPOSE: Initialize a triaxial Hernquist potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass or Gxmass a - scale radius (can be Quantity) b - y-to-x axis ratio of the density c - z-to-x axis ratio of the density zvec= (None) If set, a unit vector that corresponds to the z axis pa= (None) If set, the position angle of the x axis glorder= (50) if set, compute the relevant force and potential integrals with Gaussian quadrature of this order normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: (none) HISTORY: 2010-07-09 - Written - Bovy (UofT) 2018-08-07 - Re-written using the general EllipsoidalPotential class - Bovy (UofT) """ EllipsoidalPotential.__init__(self,amp=amp,b=b,c=c, zvec=zvec,pa=pa,glorder=glorder, ro=ro,vo=vo,amp_units='mass') a= conversion.parse_length(a,ro=self._ro) self.a= a self._scale= self.a # Adjust amp self.a4= self.a**4 self._amp/= (4.*numpy.pi*self.a**3) if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): self.normalize(normalize) self.hasC= not self._glorder is None self.hasC_dxdv= False self.hasC_dens= self.hasC # works if mdens is defined, necessary for hasC return None
def _psi(self,m): """\psi(m) = -\int_m^\infty d m^2 \rho(m^2)""" return -self.a4/(m+self.a)**2. def _mdens(self,m): """Density as a function of m""" return self.a4/m/(m+self.a)**3 def _mdens_deriv(self,m): """Derivative of the density as a function of m""" return -self.a4*(self.a+4.*m)/m**2/(self.a+m)**4 def _mass(self,R,z=None,t=0.): """ NAME: _mass PURPOSE: evaluate the mass within R (and z) for this potential; if z=None, integrate to ellipsoidal boundary INPUT: R - Galactocentric cylindrical radius z - vertical height t - time OUTPUT: the mass enclosed HISTORY: 2021-03-16 - Written - Bovy (UofT) """ if not z is None: raise AttributeError # Hack to fall back to general return 4.*numpy.pi*self.a4/self.a/(1.+self.a/R)**2./2.*self._b*self._c
[docs]class TriaxialJaffePotential(EllipsoidalPotential): """Class that implements the Jaffe potential .. math:: \\rho(x,y,z) = \\frac{\\mathrm{amp}}{4\\,\\pi\\,a^3}\\,\\frac{1}{(m/a)^2\\,(1+m/a)^{2}} with .. math:: m^2 = x'^2 + \\frac{y'^2}{b^2}+\\frac{z'^2}{c^2} and :math:`(x',y',z')` is a rotated frame wrt :math:`(x,y,z)` specified by parameters ``zvec`` and ``pa`` which specify (a) ``zvec``: the location of the :math:`z'` axis in the :math:`(x,y,z)` frame and (b) ``pa``: the position angle of the :math:`x'` axis wrt the :math:`\\tilde{x}` axis, that is, the :math:`x` axis after rotating to ``zvec``. """
[docs] def __init__(self,amp=1.,a=2.,b=1.,c=1.,zvec=None,pa=None,normalize=False, glorder=50,ro=None,vo=None): """ NAME: __init__ PURPOSE: Initialize a Jaffe potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass or Gxmass a - scale radius (can be Quantity) b - y-to-x axis ratio of the density c - z-to-x axis ratio of the density zvec= (None) If set, a unit vector that corresponds to the z axis pa= (None) If set, the position angle of the x axis glorder= (50) if set, compute the relevant force and potential integrals with Gaussian quadrature of this order normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: (none) HISTORY: 2010-07-09 - Written - Bovy (UofT) 2018-08-07 - Re-written using the general EllipsoidalPotential class - Bovy (UofT) """ EllipsoidalPotential.__init__(self,amp=amp,b=b,c=c, zvec=zvec,pa=pa,glorder=glorder, ro=ro,vo=vo,amp_units='mass') a= conversion.parse_length(a,ro=self._ro) self.a= a self._scale= self.a # Adjust amp self.a2= self.a**2 self._amp/= (4.*numpy.pi*self.a2*self.a) if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) self.hasC= not self._glorder is None self.hasC_dxdv= False self.hasC_dens= self.hasC # works if mdens is defined, necessary for hasC return None
def _psi(self,m): """\psi(m) = -\int_m^\infty d m^2 \rho(m^2)""" return 2.*self.a2*(1./(1.+m/self.a)+numpy.log(1./(1.+self.a/m))) def _mdens(self,m): """Density as a function of m""" return self.a2/m**2/(1.+m/self.a)**2 def _mdens_deriv(self,m): """Derivative of the density as a function of m""" return -2.*self.a2**2*(self.a+2.*m)/m**3/(self.a+m)**3 def _mass(self,R,z=None,t=0.): """ NAME: _mass PURPOSE: evaluate the mass within R (and z) for this potential; if z=None, integrate to ellipsoidal boundary INPUT: R - Galactocentric cylindrical radius z - vertical height t - time OUTPUT: the mass enclosed HISTORY: 2021-03-16 - Written - Bovy (UofT) """ if not z is None: raise AttributeError # Hack to fall back to general return 4.*numpy.pi*self.a*self.a2/(1.+self.a/R)*self._b*self._c
[docs]class TriaxialNFWPotential(EllipsoidalPotential): """Class that implements the triaxial NFW potential .. math:: \\rho(x,y,z) = \\frac{\\mathrm{amp}}{4\\,\\pi\\,a^3}\\,\\frac{1}{(m/a)\\,(1+m/a)^{2}} with .. math:: m^2 = x'^2 + \\frac{y'^2}{b^2}+\\frac{z'^2}{c^2} and :math:`(x',y',z')` is a rotated frame wrt :math:`(x,y,z)` specified by parameters ``zvec`` and ``pa`` which specify (a) ``zvec``: the location of the :math:`z'` axis in the :math:`(x,y,z)` frame and (b) ``pa``: the position angle of the :math:`x'` axis wrt the :math:`\\tilde{x}` axis, that is, the :math:`x` axis after rotating to ``zvec``. """
[docs] def __init__(self,amp=1.,a=2.,b=1.,c=1.,zvec=None,pa=None, normalize=False, conc=None,mvir=None, glorder=50,vo=None,ro=None, H=70.,Om=0.3,overdens=200.,wrtcrit=False): """ NAME: __init__ PURPOSE: Initialize a triaxial NFW potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass or Gxmass a - scale radius (can be Quantity) b - y-to-x axis ratio of the density c - z-to-x axis ratio of the density zvec= (None) If set, a unit vector that corresponds to the z axis pa= (None) If set, the position angle of the x axis glorder= (50) if set, compute the relevant force and potential integrals with Gaussian quadrature of this order normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. Alternatively, NFW potentials can be initialized using conc= concentration mvir= virial mass in 10^12 Msolar in which case you also need to supply the following keywords H= (default: 70) Hubble constant in km/s/Mpc Om= (default: 0.3) Omega matter overdens= (200) overdensity which defines the virial radius wrtcrit= (False) if True, the overdensity is wrt the critical density rather than the mean matter density ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: (none) HISTORY: 2016-05-30 - Written - Bovy (UofT) 2018-08-06 - Re-written using the general EllipsoidalPotential class - Bovy (UofT) """ EllipsoidalPotential.__init__(self,amp=amp,b=b,c=c, zvec=zvec,pa=pa,glorder=glorder, ro=ro,vo=vo,amp_units='mass') a= conversion.parse_length(a,ro=self._ro) if conc is None: self.a= a else: from ..potential import NFWPotential dum= NFWPotential(mvir=mvir,conc=conc,ro=self._ro,vo=self._vo, H=H,Om=Om,wrtcrit=wrtcrit,overdens=overdens) self.a= dum.a self._amp= dum._amp self._scale= self.a self.hasC= not self._glorder is None self.hasC_dxdv= False self.hasC_dens= self.hasC # works if mdens is defined, necessary for hasC # Adjust amp self.a3= self.a**3 self._amp/= (4.*numpy.pi*self.a3) if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): self.normalize(normalize) return None
def _psi(self,m): """\psi(m) = -\int_m^\infty d m^2 \rho(m^2)""" return -2.*self.a3/(self.a+m) def _mdens(self,m): """Density as a function of m""" return self.a/m/(1.+m/self.a)**2 def _mdens_deriv(self,m): """Derivative of the density as a function of m""" return -self.a3*(self.a+3.*m)/m**2/(self.a+m)**3 def _mass(self,R,z=None,t=0.): """ NAME: _mass PURPOSE: evaluate the mass within R (and z) for this potential; if z=None, integrate to ellipsoidal boundary INPUT: R - Galactocentric cylindrical radius z - vertical height t - time OUTPUT: the mass enclosed HISTORY: 2021-03-16 - Written - Bovy (UofT) """ if not z is None: raise AttributeError # Hack to fall back to general return 4.*numpy.pi*self.a3*self._b*self._c\ *(numpy.log(1+R/self.a)-R/self.a/(1.+R/self.a))