Source code for galpy.potential.SoftenedNeedleBarPotential

###############################################################################
#   SoftenedNeedleBarPotential.py: class that implements the softened needle
#                                  bar potential from Long & Murali (1992)
###############################################################################
import hashlib
import numpy
from .Potential import Potential
from ..util import coords, conversion
[docs]class SoftenedNeedleBarPotential(Potential): """Class that implements the softened needle bar potential from `Long & Murali (1992) <http://adsabs.harvard.edu/abs/1992ApJ...397...44L>`__ .. math:: \\Phi(x,y,z) = \\frac{\\mathrm{amp}}{2a}\\,\\ln\\left(\\frac{x-a+T_-}{x+a+T_+}\\right) where .. math:: T_{\\pm} = \\sqrt{(a\\pm x)^2 + y^2+(b+\\sqrt{z^2+c^2})^2} For a prolate bar, set :math:`b` to zero. """
[docs] def __init__(self,amp=1.,a=4.,b=0.,c=1.,normalize=False, pa=0.4,omegab=1.8,ro=None,vo=None): """ NAME: __init__ PURPOSE: initialize a softened-needle bar potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass a= (4.) Bar half-length (can be Quantity) b= (1.) Triaxial softening length (can be Quantity) c= (1.) Prolate softening length (can be Quantity) pa= (0.4) The position angle of the x axis (rad or Quantity) omegab= (1.8) Pattern speed (can be Quantity) normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: (none) HISTORY: 2016-11-02 - Started - Bovy (UofT) """ Potential.__init__(self,amp=amp,ro=ro,vo=vo,amp_units='mass') a= conversion.parse_length(a,ro=self._ro) b= conversion.parse_length(b,ro=self._ro) c= conversion.parse_length(c,ro=self._ro) pa= conversion.parse_angle(pa) omegab= conversion.parse_frequency(omegab,ro=self._ro,vo=self._vo) self._a= a self._b= b self._c2= c**2. self._pa= pa self._omegab= omegab self._force_hash= None self.hasC= True self.hasC_dxdv= False if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) self.isNonAxi= True return None
def _evaluate(self,R,z,phi=0.,t=0.): """ NAME: _evaluate PURPOSE: evaluate the potential at R,z INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: Phi(R,z) HISTORY: 2016-11-02 - Started - Bovy (UofT) """ x,y,z= self._compute_xyz(R,phi,z,t) Tp, Tm= self._compute_TpTm(x,y,z) return numpy.log((x-self._a+Tm)/(x+self._a+Tp))/2./self._a def _Rforce(self,R,z,phi=0.,t=0.): """ NAME: _Rforce PURPOSE: evaluate the radial force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the radial force HISTORY: 2016-11-02 - Written - Bovy (UofT) """ self._compute_xyzforces(R,z,phi,t) return numpy.cos(phi)*self._cached_Fx+numpy.sin(phi)*self._cached_Fy def _phiforce(self,R,z,phi=0.,t=0.): """ NAME: _phiforce PURPOSE: evaluate the azimuthal force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the azimuthal force HISTORY: 2016-11-02 - Written - Bovy (UofT) """ self._compute_xyzforces(R,z,phi,t) return R*(-numpy.sin(phi)*self._cached_Fx\ +numpy.cos(phi)*self._cached_Fy) def _zforce(self,R,z,phi=0.,t=0.): """ NAME: _zforce PURPOSE: evaluate the vertical force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the vertical force HISTORY: 2016-11-02 - Written - Bovy (UofT) """ self._compute_xyzforces(R,z,phi,t) return self._cached_Fz def OmegaP(self): """ NAME: OmegaP PURPOSE: return the pattern speed INPUT: (none) OUTPUT: pattern speed HISTORY: 2016-11-02 - Written - Bovy (UofT) """ return self._omegab def _compute_xyz(self,R,phi,z,t): return coords.cyl_to_rect(R,phi-self._pa-self._omegab*t,z) def _compute_TpTm(self,x,y,z): secondpart= y**2.+(self._b+numpy.sqrt(self._c2+z**2.))**2. return (numpy.sqrt((self._a+x)**2.+secondpart), numpy.sqrt((self._a-x)**2.+secondpart)) def _compute_xyzforces(self,R,z,phi,t): # Compute all rectangular forces new_hash= hashlib.md5(numpy.array([R,phi,z,t])).hexdigest() if new_hash != self._force_hash: x,y,z= self._compute_xyz(R,phi,z,t) Tp, Tm= self._compute_TpTm(x,y,z) Fx= self._xforce_xyz(x,y,z,Tp,Tm) Fy= self._yforce_xyz(x,y,z,Tp,Tm) Fz= self._zforce_xyz(x,y,z,Tp,Tm) self._force_hash= new_hash tp= self._pa+self._omegab*t cp, sp= numpy.cos(tp), numpy.sin(tp) self._cached_Fx= cp*Fx-sp*Fy self._cached_Fy= sp*Fx+cp*Fy self._cached_Fz= Fz def _xforce_xyz(self,x,y,z,Tp,Tm): return -2.*x/Tp/Tm/(Tp+Tm) def _yforce_xyz(self,x,y,z,Tp,Tm): return -y/2./Tp/Tm*(Tp+Tm-4.*x**2./(Tp+Tm))\ /(y**2.+(self._b+numpy.sqrt(z**2.+self._c2))**2.) def _zforce_xyz(self,x,y,z,Tp,Tm): zc= numpy.sqrt(z**2.+self._c2) return self._yforce_xyz(x,y,z,Tp,Tm)*z/y*(self._b+zc)/zc def _dens(self,R,z,phi=0.,t=0.): """ NAME: _dens PURPOSE: evaluate the density for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the density HISTORY: 2016-11-04 - Written - Bovy (UofT/CCA) """ x,y,z= self._compute_xyz(R,phi,z,t) zc= numpy.sqrt(z**2.+self._c2) bzc2= (self._b+zc)**2. bigA= self._b*y**2.+(self._b+3.*zc)*bzc2 bigC= y**2.+bzc2 return self._c2/24./numpy.pi/self._a/bigC**2./zc**3.\ *((x+self._a)*(3.*bigA*bigC+(2.*bigA+self._b*bigC)*(x+self._a)**2.)\ /(bigC+(x+self._a)**2.)**1.5\ -(x-self._a)*(3.*bigA*bigC+(2.*bigA+self._b*bigC)*(x-self._a)**2.)\ /(bigC+(x-self._a)**2.)**1.5)